
Approximate Algorithms for Verifying Differential Privacy with
Gaussian Distributions

Bishnu Bhusal
University of Missouri

Columbia, USA
bhusalb@missouri.edu

Rohit Chadha
University of Missouri

Columbia, USA
chadhar@missouri.edu

A. Prasad Sistla
University of Illinois at Chicago
Discovery Partners Institute

Chicago, USA
sistla@uic.edu

Mahesh Viswanathan
University of Illinois at Urbana-Champaign

Urbana, USA
vmahesh@illinois.edu

Abstract

The verification of differential privacy algorithms that employ
Gaussian distributions is little understood. This paper tackles the
challenge of verifying such programs by introducing a novel ap-
proach to approximating probability distributions of loop-free pro-
grams that sample from both discrete and continuous distributions
with computable probability density functions, including Gaussian
and Laplace. We establish that verifying (𝜖, 𝛿)-differential privacy
for these programs is almost decidable, meaning the problem is
decidable for all values of 𝛿 except those in a finite set. Our verifica-
tion algorithm is based on computing probabilities to any desired
precision by combining integral approximations, and tail proba-
bility bounds. The proposed methods are implemented in the tool,
DiPApprox, using the FLINT library for high-precision integral com-
putations, and incorporate optimizations to enhance scalability. We
validate DiPApprox on fundamental privacy-preserving algorithms,
such as Gaussian variants of the Sparse Vector Technique and Noisy
Max, demonstrating its effectiveness in both confirming privacy
guarantees and detecting violations.

CCS Concepts

• Security and privacy→ Logic and verification; • Theory of

computation→ Program analysis.

Keywords

Differential Privacy, Verification, GaussianDistribution, Tail Bounds
ACM Reference Format:

Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan.
2018. Approximate Algorithms for Verifying Differential Privacywith Gauss-
ian Distributions. In Proceedings of Make sure to enter the correct conference

title from your rights confirmation email (Conference acronym ’XX). ACM,
New York, NY, USA, 22 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Differential Privacy [30] has become the standard for protecting
individual data in sensitive datasets. In this framework [33], data
is managed by a trusted curator and queried by a potentially dis-
honest analyst. The goal is to ensure that query results remain
nearly “unchanged” whether or not an individual’s data is included,
thereby preserving privacy even against adversaries with unlimited
computational power and auxiliary data. However, it is challenging
to design protocols that meet this high bar because reasoning about
differential privacy is subtle, complex, and involves precise, quanti-
tative reasoning. Many proposed algorithms and proofs have been
found flawed [21, 37, 38, 41], leading to growing interest in pro-
gramming languages, type systems, and formal verification tools
for privacy analysis [1, 4–6, 8–12, 18, 18, 19, 35, 36, 40, 43–45, 47–
49, 54, 55].

Despite advances, automated verification of differential privacy
still faces significant challenges. Differential privacy is often en-
sured by adding noise, commonly from Laplace and Gaussian (or
Normal) distributions. While there exist several automated tools
for verifying differential privacy with Laplace distributions [4, 16,
18, 19, 29, 53], we are not aware of any automated tool that can
effectively analyze programs that incorporate Gaussian noise.

This paper studies the problem of automatically verifying if a
program using Gaussian distributions meets the requirement of
differential privacy. While the problem of checking differential pri-
vacy is undecidable even for programs that only toss fair coins [4],
a decidable subclass of programs has been identified [4]. However,
programs in this subclass are not allowed to sample from Gaussian
distributions; they have inputs and outputs over finite domains,
and can sample from Laplace distributions. The algorithm in [4]
requires handling symbolic expressions with integral functionals,
and does not generalize to Gaussian distributions as the Gaussian
distribution lacks closed-form integral-free expressions for the cu-
mulative distribution. This paper presents an approach to reason
about programs that can also sample from the Gaussian distribu-
tions. We do assume inputs and outputs are over finite domains, as
in [4].

Before presenting our contributions, let us recall the basic setup
of differential privacy. The differential privacy program/mechansim
is usually parameterized by 𝜖, henceforth referred to as privacy
parameter which controls the noise added during the computation.

https://orcid.org/0000-0001-7522-5878
https://orcid.org/0000-0002-1674-1650
https://orcid.org/0009-0005-8331-7912
https://orcid.org/0000-0001-7977-0080
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

There are two additional quantities that influence the protocol
and its correctness: a privacy budget 𝜖prv > 0, and error parameter

𝛿 ∈ [0, 1], which accounts for the probability of privacy loss.1
Given a binary relation Φ on inputs called an adjacency relation,
and taking Prob[𝜖, P(𝑢) ∈ 𝐹] to be the probability that P outputs
𝑜 ∈ 𝐹 on input 𝑢, P is said to be (𝜖prv, 𝛿)-differentially private if for
each pair (𝑢,𝑢′) ∈ Φ, and measurable subset of outputs 𝐹 , we have
that

Prob[𝜖, P(𝑢) ∈ 𝐹] − 𝑒𝜖prvProb[𝜖, P(𝑢′) ∈ 𝐹] ≤ 𝛿. (1)
When 𝛿 = 0, (𝜖prv, 0)-differential privacy is referred to as pure
𝜖prv-differential privacy. We shall say that P is (𝜖prv, 𝛿)-strictly dif-

ferentially private if the inequality in (1) holds strictly (i.e, we require
< instead of ≤).

Contributions. Given fixed 𝜖 > 0, let Prob[𝜖,𝑢, 𝑜, P] =
Prob[𝜖, P(𝑢) ∈ {𝑜}] denote the probability of P returning a sin-
gle output 𝑜 on input 𝑢. Let ComputeProb𝜚 (𝜖,𝑢, 𝑜, P) be a function
that returns an interval [𝐿,𝑈] such that Prob[𝜖,𝑢, 𝑜, P] ∈ [𝐿,𝑈]
and |𝑈 − 𝐿 |≤ 2−𝜚 ; in other words, ComputeProb𝜚 (·) approximates
Prob[𝜖,𝑢, 𝑜, P] with desired precision 𝜚 . Our first result establishes
that if the function ComputeProb𝜚 (·) is computable for a class of
programs, then the problem of determining if program P in this
class is non-(𝜖prv, 𝛿)-differential privacy is recursively enumerable
(See Theorem 9 on Page 9). Furthermore, we show that the com-
putability of ComputeProb𝜚 (·) also implies that checking if a P is
(𝜖prv, 𝛿)-strict differentially private, is recursively enumerable (See
Theorem 9 on Page 9). These two observations suggest that verify-
ing (𝜖prv, 𝛿)-differential privacy is almost decidable — the problem
of checking if P is (𝜖prv, 𝛿)-differentially private is decidable for all
values of 𝛿 , except those in a finite set DP,𝜖,𝜖prv,Φ that depends on
the program P, 𝜖, 𝜖prv and Φ. Informally, DP,𝜖,𝜖prv,Φ is the set of 𝛿
for which the inequality (1) is an equality; the precise definition is
given in Definition 4 on Page 7.

Next, we observe that the function ComputeProb𝜚 (𝜖,𝑢, 𝑜, P) is
computable for a large class of programs that sample from distribu-
tions such as the Gaussian distribution. Our class, called DiPGauss,
consist of loop-free programs, with finite domain inputs and out-
puts. These programs can sample from continuous distributions,
provided the distributions have finite means and finite variances 2

and computable
3 probability density functions. This includes com-

monly used distributions like Gaussian and Laplace. This class of
programs differs from the class presented in [4] — while they are
loop-free, they allow sampling from Gaussian distributions. Despite
their simple structure, DiPGauss programs include many widely
used algorithms such as the Sparse Vector Technique (SVT) [31],
Noisy Max [29] and their variants with Gaussian mechanisms [56].
These algorithms are used in applications like ensuring the privacy
of Large Language Models (LLMs) [2].

To describe our algorithm for ComputeProb𝜚 (𝜖,𝑢, 𝑜, P), observe
that Prob[𝜖,𝑢, 𝑜, P] can be written as a sum of the probabilities of
execution paths of P on input 𝑢 leading to output 𝑜 . Since P is loop-
free, P has only a finite number of execution paths on each input
𝑢. The probability of each execution path can be written as sum of
1Often, 𝜖prv is expressed as a function of 𝛿, 𝜖. A popular choice of 𝜖prv is 𝜖 , which
often occurs in case of pure differential privacy.
2A continuous distribution may not have finite mean or finite variance.
3By computable, we mean computable as defined in recursive real analysis [39].

iterated integrals. If none of the integrals have∞ or −∞ as upper
or lower limits, given the assumption that the probability density
functions are computable, these integrals can be evaluated to any
desired precision.

We can avoid having∞ or −∞ as limits of integrals by appealing
to tail bounds derived from Chernoff or Chebyshev inequalities
as follows. Given a threshold th > 0, we can write the probability
of an execution path 𝜏 as bpr(𝜖, 𝜏, th) + tpr(𝜖, 𝜏, th). Here bpr(·) is
the probability of the execution 𝜏 under the constraint that all
sampled values 𝑋r1 , . . . , 𝑋r𝑛 in the execution remain within th · 𝜎𝑖
from 𝜇𝑖 where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of
the distribution of 𝑋r𝑖 , respectively. The term tpr(·) accounts for
the tail probability, capturing cases where at least one sampled
value deviates by at least (th ·𝜎) from 𝜇. Now, bpr(𝜖, 𝜏, th) can again
be written as a sum of iterated integrals with finite limits. The
assumption of computability ensures that bpr(·) can be computed
to any desired precision. Moreover, by Chebyschev’s inequality, we
can always select th such that tpr(𝜖,𝑢, 𝑜, th) is arbitrarily small. This
guarantees that Prob[𝜖,𝑢, 𝑜, P] can be computed to any required
degree of precision.

Using our algorithm for ComputeProb𝜚 (𝜖,𝑢, 𝑜, P) and algorithm
for almost deciding (𝜖prv, 𝛿)-differential privacy, we implement an
algorithm VerifyDP𝜚 that returns one of 3 outputs: DP, Not_DP, or
Unknown. Crucially, as the precision parameter 𝜚 decreases, the
likelihood of getting Unknown diminishes. Our implementation of
VerifyDP𝜚 incorporates several optimizations to improve scalability
for practical examples.

First, differential privacy requires verifying that inequality (1)
holds for all pairs of adjacent inputs 𝑢,𝑢′ and all subsets 𝐹 of out-
puts. A key insight is that this verification can be reduced to check-
ing amodified equation (See Lemma 2 on Page 7) where 𝐹 is taken as
the set of all outputs, leading to exponential reduction in complexity.
Intuitively, it is enough to check the inequality (1) for the set 𝐹 of all
outputs 𝑜 for which Prob[𝜖, P(𝑢) = 𝑜] − 𝑒𝜖prvProb[𝜖, P(𝑢′) = 𝑜] > 0.

Next, we observe that the integral nesting depth signif-
icantly impacts performance while computing the value of
ComputeProb𝜚 (𝜖,𝑢, 𝑜, P). Thus, we introduce a heuristic to reduce
it. Intuitively, each variable being integrated in an integral 𝐼 dur-
ing ComputeProb𝜚 (𝜖,𝑢, 𝑜, P) represents a value sampled from an
independent distribution in the program. We call such variables,
independent random variables. For each nested integral 𝐼 , we can
define a directed acyclic graph, called the dependency graph of 𝐼 ,
on the independent random variables. An edge from r to r′ in the
dependency graph indicates that a) the integration over variable
r′ is nested within integration over r in 𝐼 , and that b) r appears in
either the upper or lower limit in the integration over r′ .

We observe that if the sets of variables reachable from two vari-
ables r1 and r2 in the dependency graph of 𝐼 are disjoint, the nested
depth of 𝐼 can be reduced by separating the integrations over r1
and r2. Exploiting this observation, we give an algorithm based on
the topological sorting of the dependency graph which yields an
integral expression 𝐼 ′ that has the same value as 𝐼 , but lower nest-
ing depth. Applying this heuristic, our prototype tool was able to
rewrite the integrals for the SVT-Gauss algorithm [56] with at most
3 nested integrals, independent of the number of input variables.

Approximate Algorithms for Verifying Differential Privacy with Gaussian Distributions Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Without this optimization, the nested depth scales with the number
of input variables.

We implemented VerifyDP𝜚 in a tool,DiPApprox. Our implemen-
tation leverages the FLINT library [50] to evaluate nested integrals
with finite limits. FLINT enables rigorous arithmetic with arbi-
trary precision using ball enclosures, where values are represented
by a midpoint and a radius. Using the above outlined approach,
our tool successfully verified variants of the Sparse Vector Tech-
nique [31, 56], Noisy Max [33], 𝑘-Min-Max [19], 𝑚-Range [19]
with Gaussians (and Laplacians) across varying input lengths. Ad-
ditionally, it confirmed the non-differential privacy of insecure
versions of the Sparse Vector Technique with Gaussians. These
experiments highlight the potential of our approach for the auto-
mated verification of differential privacy in programs that sample
from complex continuous distributions. DiPApprox is available for
download at [3].

Organization. The rest of the paper is organized as follows.
Preliminary mathematical notation and definitions are given in
Section 2. Section 3 discusses the variant of Sparse Vector Tech-
nique with Gaussians [56]. Section 4 introduces the syntax and
semantics of DiPGauss, the language we use to specify differen-
tial privacy algorithms. Section 5 presents VerifyDP𝜚 , assuming
that there is an algorithm that computes ComputeProb𝜚 (·). It also
presents the rephrasing of differential privacy. Section 6 shows how
ComputeProb𝜚 (·) can be implemented and presents the integral op-
timization discussed above. We also present our decidability results
here in this section. Section 7 discusses DiPApprox and presents
the experimental evaluation. Section 8 discusses related work, and
our conclusions are presented in Section 9.

2 Preliminaries

We denote the sets of real, rational, natural, and integer numbers by
R, Q, N, and Z, respectively, and the Euler constant by 𝑒 . A partial

function 𝑓 from 𝐴 to 𝐵 is denoted as 𝑓 : 𝐴 ⇀ 𝐵. We assume that
the reader is familiar with probability. For events 𝐸 and 𝐸, Prob[𝐸]
represents the probability of 𝐸, and Prob[𝐸 |𝐹] the conditional prob-
ability of 𝐸 given 𝐹 .

Gaussian (Normal) Distribution. The one dimensional Gaussian
distribution, denoted by N (𝜇, 𝜎), is parameterized by the mean
𝜇 ∈ R and the standard deviation 𝜎 > 0. Its probability density
function (PDF), 𝑓𝜇,𝜎 (𝑥), is defined as:

𝑓𝜇,𝜎 (𝑥) = 1
𝜎
√

2𝜋
𝑒
− (𝑥−𝜇)2

2𝜎2 (2)

Laplace distribution. The Laplace distribution denoted Lap(𝜇, 𝑏)
is parameterized by mean 𝜇 and the scaling parameter 𝑏 ≥ 0. Its
probability density function (PDF), 𝑔𝜇,𝑏 (𝑥), is defined as:

𝑔𝜇,𝑏 (𝑥) = 1
2𝑏 𝑒
− |𝑥−𝜇 |

𝑏 (3)

The standard deviation of Lap(𝜇, 𝑏) is
√

2𝑏.

Tail Bounds. In our framework, execution probabilities are com-
puted using nested definite integrals. Apriori, integrals may involve
∞ and −∞ as upper and lower limits, respectively. As we will see

(Section 6), we shall use tail bounds on probabilities to approximate
the integral as a sum of definite integrals with finite limits.

Given a random variable 𝑋 with finite mean 𝜇 and non-zero
standard deviation 𝜎 and th > 0, we say that the two-sided tail

probability is

tl(th, 𝑋, 𝜇, 𝜎) = Prob[|𝑋 − 𝜇 | > th · 𝜎].

For Laplace distribution, we have that tl(th, 𝑋, 𝜇, 𝜎) = 𝑒−th
√

2 .
If 𝑋 is a Gaussian (also known as normal) random variable, we

obtain the following bounds on the tail probabilities using Chernoff
bounds: tl(th, 𝑋, 𝜇, 𝜎) ≤ 2𝑒−

th2
2 .

For a general random variable with finite mean 𝜇 and standard
deviation 𝜎 , Chebyschev’s inequality yields that tl(th, 𝑋, 𝜇, 𝜎) ≤

1
th2 . Observe that all the bounds on tail probabilities discussed here
monotonically decrease to 0 as th tends to∞.

Approximate Differential Privacy. Differential privacy [30] is a
framework that enables statistical analysis of databases containing
sensitive personal information while protecting individual privacy.
A randomized algorithm P, called a differential privacy mechanism,
mediates the interaction between a (potentially dishonest) data
analyst and a database 𝐷 . The analyst submits queries requesting
aggregate information such as means, and for each query, P com-
putes its response using both the actual database values and random
sampling to produce “noisy” answers. While this approach ensures
privacy, it comes at the cost of reduced accuracy. The amount of
noise added by P is controlled by a privacy parameter 𝜖 > 0.

The framework provides privacy guarantees for all individuals
whose information is stored in database 𝐷 . This is informally cap-
tured as follows. Let 𝐷 \ {𝑖} denote the database with individual 𝑖’s
information removed. A secure mechanism𝑀 ensures that for any
individual 𝑖 in 𝐷 and any sequence of possible outputs 𝑜 , the prob-
ability of P producing 𝑜 remains approximately the same whether
querying 𝐷 or 𝐷 \ {𝑖}.

Let us define this formally. A differential privacy mechanism is a
family of programs P𝜖 whose behavior depends on the privacy pa-
rameter 𝜖 ; for notational simplicity, we will often drop the subscript
and use P to refer to the programs. Given a setU of inputs and a
setV of outputs, a randomized function P fromU toV takes an
input inU and returns a distribution overV . For a measurable set
𝐹 ⊆ V , the probability that the output of P on 𝑢 is in 𝐹 is denoted
by Prob[P(𝑢) ∈ 𝐹] . We assume thatU is equipped with a binary
asymmetric relation Φ ⊆ U ×U, called the adjacency relation. Ad-
jacent inputs (𝑢1, 𝑢2) ∈ Φ represent query outputs for databases 𝐷
and 𝐷 \ {𝑖} where 𝑖 is some individual.

Definition 1. Let 𝜖, 𝜖prv > 0, 0 ≤ 𝛿 ≤ 1 and Φ ⊆ U × U be an
adjacency relation. Let P be a randomized algorithm depending
on a privacy parameter 𝜖 with inputs U and outputs V . We say
that P is (𝜖prv, 𝛿)-differentially private with respect to Φ if for all
measurable subsets 𝑆 ⊆ V and 𝑢,𝑢′ ∈ U such that (𝑢,𝑢′) ∈ Φ,

Prob[P(𝑢) ∈ 𝑆] ≤ 𝑒𝜖prv Prob[P(𝑢′) ∈ 𝑆] + 𝛿.

𝜖prv is called the privacy budget, and 𝛿 the error parameter.
We say that P is (𝜖prv, 𝛿)-strictly differentially private with re-

spect to Φ if for all measurable subsets 𝑆 ⊆ V and 𝑢,𝑢′ ∈ U such

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

that (𝑢,𝑢′) ∈ Φ,
Prob[P(𝑢) ∈ 𝑆] < 𝑒𝜖prv Prob[P(𝑢′) ∈ 𝑆] + 𝛿.

3 Motivating Example: Sparse Vector Technique

with Gaussians (SVT-Gauss)
Let us walk through a simple example to demonstrate our method
before exploring the full mathematical details. The Sparse Vector
Technique (SVT) is a fundamental algorithmic tool in differential
privacy that plays an important role in adaptive data analysis and
model-agnostic private learning [32, 33]. While the original Sparse
Vector Technique (SVT) uses Laplace noise to achieve (𝜖prv, 0)-
differential privacy, recent work has explored a Gaussian variant
that achieves (𝜖prv, 𝛿)-differential privacy [56]. SVT with Gaussian
distribution (SVT-Gauss) offers better utility than the version using
Laplace noise through more concentrated noise [56].

Algorithm 1: SVT-Gauss
Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← N (𝑇, 2
𝜖)

for 𝑖 ← 1 to 𝑁 do

r← N (𝑞[𝑖], 4
𝜖)

if r ≥ r𝑇 then

𝑜𝑢𝑡[𝑖]← 1
exit

else

𝑜𝑢𝑡[𝑖]← 0
end

end

The SVT mechanism with Gaussian sampling (SVT-Gauss) is
shown in Algorithm 1. Given an array 𝑞 containing answers to 𝑁

queries and threshold 𝑇 , the goal is to output the index of the first
query that exceeds the threshold in a privacy preserving manner 4.
The algorithm perturbs the threshold and each query answer by
adding Gaussian noise. The algorithm progressively compares the
perturbed query answer against the perturbed threshold, assigning
0 to the output array 𝑜𝑢𝑡 if the query is less and 1 if it is not. The
algorithm stops when either 1 is assigned or if all the query answers
in 𝑞 are processed. 𝜖 is the privacy parameter of the algorithm.

The input setU consists of 𝑁 -length vectors 𝑞, where the 𝑘th
element 𝑞[𝑘] represents the answer to the 𝑘th query on the original
database. The adjacency relation Φ on inputs is defined as follows:
𝑞1 and 𝑞2 are adjacent if and only if |𝑞1[𝑖] − 𝑞2[𝑖]| ≤ 1 for each
1 ≤ 𝑖 ≤ 𝑁 .

Recall that the pdf of a Gaussian random variable N (𝜇, 𝜎) is
denoted as 𝑓𝜇,𝜎 . Consider the case when 𝑇 = 0, 𝑁 = 2 and entries
in 𝑞 are limited to {0, 1}. Thus, there are 4 possible inputs ([0, 0],
[0, 1], [1, 1], and [1, 0]) and three possible outputs ([0, 0], [1, 0], and
4In general, the SVT protocols identifies the first 𝑐 queries that exceed the threshold,
for some fixed parameter 𝑐 . Also, the privacy of the algorithm can only be guaranteed
for query answers that are sensitive upto some parameter ∆. Both 𝑐 and ∆ influence
the noise that is added when processing the array 𝑞. In Algorithm 1, we assume that
𝑐 = 1 and ∆ = 1.

[0, 1]). Let𝑋𝑇 ,𝑋1,𝑋2 be the random variables denoting the values of
variables r𝑇 , r during different iterations, in Algorithm 1. Observe
that 𝑋𝑇 is drawn from N (0, 2

𝜖) and 𝑋𝑖 from N (𝑞[𝑖], 4
𝜖).

Consider adjacent inputs [0, 1] and [1, 1]. On input 𝑞 = [0, 1], the
probability of output [0, 0] is given by Prob[𝑋1 < 𝑋𝑇 , 𝑋2 < 𝑋𝑇],
which can be computed as:

𝑝1(𝜖) =
∫∞
−∞

𝑓0, 2
𝜖

(𝑥𝑇)
∫𝑥𝑇

−∞
𝑓0, 4

𝜖
(𝑥1)

∫𝑥𝑇

−∞
𝑓1, 4

𝜖
(𝑥2) 𝑑𝑥2𝑑𝑥1𝑑𝑥𝑇

Similarly, the probability of output [0, 1] on input [0, 1] is given by
Prob[𝑋1 < 𝑋𝑇 , 𝑋2 > 𝑋𝑇], which can be computed as:

𝑝2(𝜖) =
∫∞
−∞

𝑓0, 2
𝜖

(𝑥𝑇)
∫𝑥𝑇

−∞
𝑓0, 4

𝜖
(𝑥1)

∫∞
𝑥𝑇

𝑓1, 4
𝜖

(𝑥2) 𝑑𝑥2𝑑𝑥1𝑑𝑥𝑇

In the same way, when the input is [1, 1], the probability of
output [0, 0] and [0, 1] is given by:

𝑝′1(𝜖) =
∫∞
−∞

𝑓0, 2
𝜖

(𝑥𝑇)
∫𝑥𝑇

−∞
𝑓1, 4

𝜖
(𝑥1)

∫𝑥𝑇

−∞
𝑓1, 4

𝜖
(𝑥2) 𝑑𝑥2𝑑𝑥1𝑑𝑥𝑇

𝑝′2(𝜖) =
∫∞
−∞

𝑓0, 2
𝜖

(𝑥𝑇)
∫𝑥𝑇

−∞
𝑓1, 4

𝜖
(𝑥1)

∫∞
𝑥𝑇

𝑓1, 4
𝜖

(𝑥2) 𝑑𝑥2𝑑𝑥1𝑑𝑥𝑇

Observe that 𝑝1(𝜖), 𝑝2(𝜖), 𝑝′1(𝜖) and 𝑝′2(𝜖) are functions of 𝜖 . To
check if the adjacent inputs [0, 1] and [1, 1] satisfy the conditions
of (𝜖prv, 𝛿)-differential privacy for given privacy budget 𝜖prv, error
𝛿 and output set {[0, 0], [0, 1]}, we need the following to hold.

𝑝1(𝜖) + 𝑝2(𝜖) ≤ 𝑒𝜖prv [𝑝′1(𝜖) + 𝑝′2(𝜖)] + 𝛿,

𝑝′1(𝜖) + 𝑝′2(𝜖) ≤ 𝑒𝜖prv [𝑝1(𝜖) + 𝑝2(𝜖)] + 𝛿.

Note that since outputting [0, 0] and [0, 1] are independent
events, we can sum their probabilities to obtain an expression for
{[0, 0], [0, 1]}.

Verifying (𝜖prv, 𝛿)-differential privacy for a given 𝜖 > 0 involves
computing expressions like 𝑝𝑖 (𝜖) and 𝑝′

𝑖
(𝜖) and checking if inequal-

ities like the one above hold for all possible sets of outputs.
The following theorem states the differential privacy of Algo-

rithm 1, and follows from the results of [56].

Theorem 1. For any 𝜖 > 0 and 0 < 𝛿 ≤ 1
1+𝑁 , SVT-Gauss (Algo-

rithm 1) is (𝜖prv, 𝛿)-differential privacy for any 𝜖prv such that

𝜖prv ≥
5𝜖2

32 +
√

5
2 𝜖

√︂
log 1

𝛿
.

SVT-Gauss belongs to the class of programs that we consider
in this paper. Observe that when 𝜖 = 0.5, 𝛿 = 0.01, 𝑁 < 100,
𝜖prv ≥ 1.24. In our experiments, we are able to automatically verify
differential privacy with these values of 𝜖, 𝜖prv and 𝑁 ≤ 5. When
we consider only single pair of adjacent inputs, our tool is able to
handle 𝑁 upto 25.

4 Program syntax and semantics

We introduce a class of probabilistic programs called DiPGauss,
where variables can be assigned values drawn from Gaussian dis-
tributions or Laplace distributions, commonly used in differential
privacy algorithms. DiPGauss is designed with syntactic restric-
tions that simplify its encoding into integral expressions. While
these restrictions impose certain limitations, they also enable defin-
itive verification of whether a program satisfies differential privacy.

Approximate Algorithms for Verifying Differential Privacy with Gaussian Distributions Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Despite its constraints, DiPGauss is a powerful language capable
of expressing interesting differentially private algorithms.

Before we present our syntax formally, we observe that differen-
tial privacy algorithms are often described as parameterized pro-
grams. Colloquially, this parameter is the privacy budget. However,
in many instances, the parameter may be different from the privacy
budget. (See Theorem 1, Section 3.) Thus, to explicitly distinguish
the parameter in the program and the privacy budget, we shall refer
to the program parameter as privacy parameter and denote it as 𝜖.
We will use 𝜖prv to denote the privacy budget.

Expressions (r ∈ R, x ∈ X, 𝑞 ∈ Q,∼∈ {=, ≤, <, ≥, >, ̸=}):
𝑅 := r | 𝑞𝑅 | 𝑅 + 𝑅 | 𝑅 + 𝑞

𝐵 := 𝑅 ∼ 𝑅 | 𝑅 ∼ x | x ∼ x

Program Statements (𝑑 ∈ DOM, 𝑎 ∈ Q>0):
𝑆 := x← 𝑑

| r← N (x, 𝑎𝜖)
| r← Lap(x, 𝑎𝜖)
| r← 𝑅

| if𝐵 then 𝑆 else 𝑆 end
| skip
| 𝑆 ; 𝑆

Figure 1: BNF grammar for DiPGauss. DOM is a finite discrete domain, taken

to be a finite subset of the rationals. R is the set of real random variables and

X is the set of DOM variables. Q>0
denotes set of positive rational numbers.

4.1 Syntax of DiPGauss Programs

The formal syntax of DiPGauss programs is presented in Figure 1.
DiPGauss programs are parametrized, loop-free programs that can
sample from continuous distributions. Programs have two types of
variables: real random variables and finite-domain variables from
DOM, denoted by sets R andX respectively. We assume that DOM
is some finite subset of rationals and so they can be compared
against each other and with real values. Boolean expressions (𝐵)
can be constructed by comparing real variables with each other,
with DOM-variables, or by comparing DOM variables with each
other.

A program is a sequence of statements that can either be assign-
ments to program variables or if conditionals. Assignments can
either assign constants (real or DOM values) or values drawn from
continuous distributions. In Figure 1, the only distributions we have
listed are the Laplace or Gaussian distributions. This is done to keep
the presentation simple in this paper. Our results apply even when
the syntax of the program language is extended, where samples
are drawn from any continuous distribution with a finite mean and
variance and a computable probability density function.
Remark. A couple of remarks on the program syntax are in order
at this point. DiPGauss does not natively support loops but for-
loops can be seen as syntactic sugar in the standard way. A loop
of the form for 𝑖 = 1 to 𝑁 do 𝑆 can be expanded into a sequence
𝑆1; 𝑆2; . . . ; 𝑆𝑁 , where 𝑁 is a constant and each iteration is explicitly
unrolled.

Next, Boolean expressions used in conditionals are restricted to
comparison between program variables and constants; the syntax

does not allow the use of standard logical operators such as nega-
tion, conjunction, and disjunction. However, this is not a restriction
in expressive power. Taking a step based on the negation of a con-
dition holding can be handled through the else branch, conjunction
through nested if-thens, and disjunction through a combination of
nesting and else branches.

A program P in DiPGauss is defined as a triple (I,O, 𝑆), where:
• I ⊆ X is a set of private input variables.
• O ⊆ X is a set of public output variables.
• I ∩ O = ∅
• 𝑆 is a program statement generated by the non-terminal 𝑆
of the grammar in Figure 1.

As seen in the grammar of Figure 1, each sampled probability dis-
tribution used in the statements of P, has a parameter 𝜖 . Thus, P
is a parameterized program with parameter 𝜖 appearing in it. The
parameter 𝜖 will be instantiated when computing the probabilities
associated with P.

Remark. Strictly speaking, P represents a family of programs, and
it is more accurate to represent it as P𝜖 . However, we choose to not
mention 𝜖 explicitly to reduce notational overhead.

Example 1. Algorithm 1 can be rewritten as a DiPGauss program
when 𝑇 = 0 and 𝑁 = 2. This is shown as Algorithm 2, where the
bounded for-loop is unrolled and written without any loops.

Algorithm 2: SVT-Gauss with 𝑁 = 2 written in DiPGauss
Input: 𝑞1, 𝑞2
Output: 𝑜𝑢𝑡1, 𝑜𝑢𝑡2

1 𝑇 ← 0
2 𝑜𝑢𝑡1 ← 0
3 𝑜𝑢𝑡2 ← 0
4 r𝑇 ← N (𝑇, 2

𝜖)
5 r1 ← N (𝑞1, 4

𝜖)
6 if r1 ≥ r𝑇 then

7 𝑜𝑢𝑡1 ← 1
else

8 r2 ← N (𝑞2, 4
𝜖)

9 if r2 ≥ r𝑇 then

10 𝑜𝑢𝑡2 ← 1
end

end

We conclude this section with a couple of assumptions about
programs in DiPGauss. We will assume that in every program,
each real variable is assigned a value at most once along every
control path. Clearly, since our program are loop-free, this is not
a restriction, as a program where variables are assigned multiple
times can be transformed into one that satisfies this assumption
by introducing new variables. However, making this assumption
about our programs will make it easier to describe the semantics.

Finally, we will assume that programs are well-formed. That is,
all references in non-input variables in the program are preceded
by assignments to those variables.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

4.2 Semantics

The semantics for DiPGauss programs presented in this section
crucially relies on the notion of state. Typically, state for a non-
recursive imperative program without dynamic allocation is just
an assignment of values to the program variables. However, for
programs where real variables are assigned values from continu-
ous distributions, this does not work. Instead, we will record the
values of real variables “symbolically” — we will either record the
distribution (plus parameters like mean) from which the value of a
real variable is sampled or the expression it is assigned 5. However,
to reliably assign probabilities to paths with such “symbolic states”,
we also need to track the Boolean conditions that are assumed to
hold so far. Based on these intuitions let us define states formally.

States. Let BExp and RExp denote the set of expressions de-
rived from the non-terminals 𝐵 and 𝑅, respectively, in Figure 1.
Define Distr = {Gaussian, Laplace} × Q × Q>0; elements of this
set denote distributions along with appropriate parameters. So,
(Gaussian, 𝜇, 𝜎) represents the Gaussian distribution with mean 𝜇

and standard deviation𝜎 while (Laplace, 𝜇, 𝑏) represents the Laplace
distribution with mean 𝜇 and scaling parameter 𝑏. A state st is then
a triple st = (𝛼, 𝛽,𝐺), where 𝛼 : X ⇀ DOM, 𝛽 : R ⇀ Distr ∪ RExp,
and𝐺 ⊆ BExp. Here 𝛼 is a partial map that assigns a value to DOM
variables, 𝛽 is a partial function mapping real variables to either the
distribution from which they are sampled or the expression that is
assigned to them, and 𝐺 is a set of Boolean conditions.

For a state st and a variable r ∈ R, we say that r is an independent
variable if 𝛽(r) ∈ Distr and a dependent variable if 𝛽(r) ∈ RExp. For a
state st, (DOM or real) variable v and value𝑢 ∈ DOM∪Distr∪RExp,
st[v ↦→ 𝑢] denotes the state that maps v to 𝑢 and is otherwise
identical to st.

Final States. JPKst denotes the set of final states reached when P
is executed from starting state st. It is inductively defined as follows.
• JskipKst = {st}.
• Jx← 𝑑Kst = {st[x ↦→ 𝑑]}.
• Jr← N (x, 𝑎𝜖)Kst =

{
st

[
r ↦→

(
Gaussian, st(x), 𝑎𝜖

)]}
.

• Jr← Lap(x, 𝑎𝜖)Kst =
{
st

[
r ↦→

(
Laplace, st(x), 𝑎𝜖

)]}
.

• Jr ← 𝑅Kst = {st [r ↦→ 𝑅′]}, where 𝑅′ is the expression ob-
tained by replacing every dependent r′ ∈ R that appears in
𝑅 with 𝛽(r′).
• Jif𝐵 then P1 else P2 endKst = JP1Kst{𝐵} ∪ JP2Kst{¬𝐵} , where
st{𝐵} = st[𝐺 ↦→ st(𝐺) ∪ {𝐵}] and st{𝐵} = st[𝐺 ↦→ st(𝐺) ∪
{¬𝐵}]. Here, ¬𝐵 denotes the “flipped” comparison: for ∼∈
{<, ≤, >, ≥, =, ̸=}, ¬(𝑅 ∼ 𝑅′) ≜ (𝑅∼𝑅′), where < =≥, ≤ =>,
> =≤, ≥ =<, = ≠=, and ̸= ==.
• JP1;P2Kst =

⋃
𝜏∈JP1Kst

{𝜏 ′ | 𝜏 ′ ∈ JP2K𝜏 }.

Input/Output Behavior. Let us fix a program P = (I,O, 𝑆), an
input valuation𝑢 : I → DOM and output valuation𝑜 : O → DOM.
The final states of P on input 𝑢 with output 𝑜 , denoted 𝜌(𝑢, 𝑜, P), is
defined as

𝜌(𝑢, 𝑜, P) = {(𝛼, 𝛽,𝐺) ∈ JPKst0 | ∀𝑦 ∈ O, 𝛼(𝑦) = 𝑜(𝑦)}

5Recall that we assume that every real variable is assigned at most once during an
execution; see Section 4.1.

where the initial state st0 = (𝛼0, 𝛽0,𝐺0) has𝐺0 = ∅, 𝛽0 is the partial
function with empty domain, and 𝛼0 is the partial function with
domain I such that 𝛼0(𝑥) = 𝑢(𝑥) for 𝑥 ∈ I.

Probability of a state. Let 𝜏 = (𝛼, 𝛽,𝐺) be a state. Define
𝐺const = {𝑔 ∈ 𝐺 | 𝑔 = x ∼ x′, where x, x′ ∈ X},

and
𝐺rand = {𝑔 ∈ 𝐺 | 𝑔 = r ∼ x or 𝑔 = r ∼ r′ where r, r′ ∈ R, x ∈ X}.
Let evalc(𝐺const) be the Boolean value given by

evalc(𝐺const) =
∧

(x∼x′)∈𝐺const

𝛼(x) ∼ 𝛼(x′).

In the above equation, when 𝐺const = ∅, the conjunction is taken
to be true as is standard.

Let rand be the partial function on R with the same domain
as 𝛽 defined as follows. If 𝛽(r) = (Gaussian, 𝜇, 𝜎), then rand(r) is
the Gaussian random variable 𝑋r with parameters (𝜇, 𝜎). If 𝛽(r) =
(Laplace, 𝜇, 𝑏), then rand(r) is the Laplace random variable 𝑋r with
parameters (𝜇, 𝑏). If 𝛽(r) = 𝑅, where 𝑅 ∈ RExp, then rand(r) is
the expression obtained from 𝑅 by replacing every independent
variable r′ appearing in 𝑅 by the random variable 𝑋r′ . Now, let us
define

evalr(𝐺rand) =
(∧
r∼r′∈𝐺rand: r,r′∈R

rand(r) ∼ rand(r′)
)
∧(∧

r∼x∈𝐺rand: r∈R, x∈X
rand(r) ∼ 𝛼(x)

)
Now, for a given value to the parameter 𝜖 , the probability of 𝜏 is

given by:

Prob[𝜖, 𝜏] =
{

0 if evalc(𝐺const) = false

Prob[𝜖, evalr(𝐺rand)] otherwise
where Prob[(𝜖, evalr(𝐺rand))] is the probability that the random
variables 𝑋r satisfy the condition evalr(𝐺rand) for the given value
of 𝜖.

Probability of Output. For any given 𝜖 > 0, the probability that
the program P outputs the valuation 𝑜 , with input values given by
valuation 𝑢, denoted by Prob[𝜖,𝑢, 𝑜, P], is defined as

Prob[𝜖,𝑢, 𝑜, P] =
∑︁

𝜏∈𝜌(𝑢,𝑜,P)
Prob[𝜖, 𝜏]

Example 2. For the SVT-Gauss program given in Algorithm 2,
called P here, the set of input variables I = {𝑞1, 𝑞2}, and the set of
output variables O = {𝑜𝑢𝑡1, 𝑜𝑢𝑡2}.

Consider an input assignment 𝑢 = {𝑞1 ↦→ 0, 𝑞2 ↦→ 1} and an
output assignment 𝑜 = {𝑜𝑢𝑡1 ↦→ 0, 𝑜𝑢𝑡2 ↦→ 1}. In this case, it can
be easily seen that there is a single state 𝜏 = (𝛼, 𝛽,𝐺) in 𝜌(𝑢, 𝑜, P)
where 𝛼(𝑜𝑢𝑡1) = 0, 𝛼(𝑜𝑢𝑡2) = 1 and𝐺 = 𝐺rand = {r1 < r𝑇 , r2 ≥ r𝑇 }.

Now, we have
Prob[𝜖,𝑢, 𝑜, P] = Prob[𝜖, 𝜏] = Prob[𝑋r1 < 𝑋r𝑇 ∧ 𝑋r2 ≥ 𝑋r𝑇]
For a set of output valuations 𝐹 , the probability of 𝑃 producing

an output in 𝐹 on input 𝑢 can be defined as ∑
𝑜∈𝐹 Prob[𝜖,𝑢, 𝑜, P].

Using this, the definitions (𝜖prv, 𝛿)-differential privacy and (𝜖prv, 𝛿)-
strict differential privacy given in Definition 1, can be precisely
instantiated for DiPGauss programs.

Approximate Algorithms for Verifying Differential Privacy with Gaussian Distributions Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Definition 2. The differential privacy problem is the following:
Given a DiPGauss program P, rational numbers 𝜖0 > 0, 𝜖prv > 0,
𝛿 ∈ [0, 1], determine if P with privacy parameter taking value 𝜖0 is
(𝜖prv, 𝛿)-differentially private.

5 Checking differential privacy for DiPGauss
programs

We describe our core algorithms for checking differential privacy of
programs. For the rest of the section, we assume that we are given
a DiPGauss program P = (I,O, 𝑆) with privacy parameter 𝜖 . LetU
be the set of possible functions from I to DOM, andV be the set
of possible functions from O to DOM respectively, 𝜖prv denote the
privacy budget. Let 𝛿 denote the error parameter.

Definition 3. A precision 𝜚 is a natural number. A 𝜚 -
approximation of a real number 𝑝 is an interval [𝐿,𝑈] such that
𝐿,𝑈 are rational numbers, 𝐿 ≤ 𝑝 ≤ 𝑈 and𝑈 − 𝐿 ≤ 2−𝜚 .

Verifying differential privacy of P requires checking inequalities
across all subsets of possible outputs, as specified in Definition 1.
Two key challenges arise in this context. We describe the challenges
below and develop two key innovations to tackle them.
(1) Apriori, the inequality in Definition 1 needs to be checked

exponentially many times as there are 2 | O | possible subsets of
outputs. For example, consider Algorithm 1 with 𝑁 inputs: we
have 𝑁 possible outputs, resulting in 2𝑁 subsets to check for
each adjacent pair. Given that we have to check all adjacent
pairs, this makes these checks even more expensive. Instead
of checking every possible subset, we rephrase the differential
privacy definition so that only one equation needs to be checked
for each adjacent input (See Lemma 2).

(2) As mentioned in the Introduction, it is unclear that
Prob[𝜖,𝑢, 𝑜, P] can be computed exactly. Hence, instead of com-
puting Prob[𝜖,𝑢, 𝑜, P] exactly, we compute 𝜚 -approximations of
Prob[𝜖,𝑢, 𝑜, P] and 𝑒𝜖prvProb[𝜖,𝑢, 𝑜, P] for a given precision 𝜚 .

This allows us to design an algorithm, VerifyDP𝜚 that returns
three possible values: DP, Not_DP, and Unknown. The algo-
rithm is sound in that if it returns DP (Not_DP), then the input
program P is differentially private (not differentially private,
respectively).

The following lemma whose proof is given in Appendix A allows
us to tame the exponential number of subsets of outputs in the
differential privacy checks.

Lemma 2. A DiPGauss program P is (𝜖prv, 𝛿)-differentially private

(for 𝜖prv > 0 and 𝛿 ∈ [0, 1]) with respect to Φ iff for all (𝑢,𝑢′) ∈ Φ,

𝛿𝑢,𝑢′ =
∑︁
𝑜∈V

max(Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0) ≤ 𝛿 (4)

It will be useful to consider the set of error parameters for which
Equation 4 becomes an equality.

Definition 4. For a program P𝜖 with adjacency Φ, the set of critical
error parameters is defined to be the set

DP,𝜖,𝜖prv,Φ = {𝛿𝑢,𝑢′ | (𝑢,𝑢′) ∈ Φ &𝛿𝑢,𝑢′ =
∑︁
𝑜∈V

max(Prob[𝜖,𝑢, 𝑜, P]

− 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0)}.

We shall now describe the VerifyDP𝜚 algorithm that allows us
to verify (soundly) differential and non-differential privacy.

5.1 VerifyDP algorithm

We will assume that we can approximate Prob[𝜖,𝑢, 𝑜, P] and
𝑒𝜖prvProb[𝜖,𝑢, 𝑜, P] to any desired degree of precision. We shall
refer to Prob[𝜖,𝑢, 𝑜, P] as output probability and 𝑒𝜖prvProb[𝜖,𝑢, 𝑜, P]
as scaled output probability.

Definition 5. We say that the output probability is effectively
approximable if there is an algorithm ComputeProb𝜚 (·) such that
on input 𝜚 , rational number 𝜖 > 0, 𝑢 ∈ U, 𝑜 ∈ V, and DiPGauss
program P, ComputeProb𝜚 (𝜖,𝑢, 𝑜, P) outputs a 𝜚 -approximation of
Prob[𝜖,𝑢, 𝑜, P].

We say that the scaled output probability is effectively approx-
imable if there ComputeScaleProb𝜚 (·) such that on input 𝜚 , ra-
tional 𝜖prv, 𝜖 > 0, 𝑢 ∈ U, 𝑜 ∈ V and DiPGauss program P,
ComputeScaleProb𝜚 (𝜖prv, 𝜖,𝑢, 𝑜, P, 𝜖prv) outputs a 𝜚 -approximation
of 𝑒𝜖prvProb[𝜖,𝑢, 𝑜, P], respectively.

If the algorithm ComputeProb𝜚 (·) (ComputeScaleProb𝜚 (·),
respectively) computes 𝜚 -approximation for Prob[𝜖,𝑢, 𝑜, P]
(𝑒𝜖prvProb[𝜖,𝑢, 𝑜, P], respectively) for a specific 𝜚 only (and not
for all 𝜚), we say that the the output probability (scaled output
probability, respectively) is effectively 𝜚 -approximable.

We have the following.

Proposition 3. If the output probability is effectively approximable

then the scaled output probability is effectively approximable.

The VerifyDP𝜚 algorithm (See Algorithm 3) checks differential
privacy for P = (I,O, 𝑆) for all input pairs given by the adjacency
relation Φ, privacy parameter 𝜖 , error parameter 𝛿 and privacy bud-
get 𝜖prv. The algorithm assumes the existence of ComputeProb𝜚 (·),
ComputeScaleProb𝜚 (·), and proceeds as follows.

The algorithm processes one adjacent pair at a time. The
algorithm also maintains a flag 𝑏. Intuitively, the flag 𝑏 is
true if P is differentially private for all input pairs 𝑢 and 𝑢′

checked thus far. For each adjacent pair (𝑢,𝑢′) ∈ Φ, and each
output 𝑜 ∈ V, the algorithm calls ComputeProb𝜚 (𝜖,𝑢, 𝑜, P),
and ComputeScaleProb𝜚 (𝜖prv, 𝜖,𝑢′, 𝑜, P). The resulting values are
stored in dictionaries store and store_scale. The dictionary store
stores the output probabilities, and the dictionary store_scale stores
the scaled output probabilities. Once the probabilities for each out-
put 𝑜 have been stored, the algorithm calls the function VerifyPair
to either prove or disprove differential privacy for the input pair
𝑢 and 𝑢′, or to indicate that the current precision 𝜚 is insufficient
(i.e., the result is Unknown).

If VerifyPair returns Not_DP for any input pair, the flag 𝑏 is set
to false and the algorithm terminates immediately, concluding that
the program is not differentially private. In cases where VerifyPair
returnsUnknown for a particular pair, the flag 𝑏 is set to false. How-
ever, we continue to process the remaining pairs in Φ. The rationale
is that we may be able to conclude that P is not differentially private
for some other pair that has not been checked as yet.

After processing all adjacent pairs, if the flag 𝑏 remains true,
the algorithm returns that the program is differentially private;
otherwise, it returns Unknown.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Algorithm 3: VerifyDP𝜚
Input: Program P, Adjacency Φ, Privacy parameter 𝜖 , Error

parameter 𝛿 , Privacy Budget 𝜖prv, precision 𝜚

Output: One of (a) DP (satisfies DP) (b) Not_DP (violates
DP) (c) Unknown

store← ∅
𝑏 ← true
foreach (𝑢,𝑢′) ∈ Φ do

foreach 𝑜 ∈ V do

if (𝑜,𝑢) /∈ store then
store[(𝑜,𝑢)]← ComputeProb𝜚 (𝜖,𝑢, 𝑜, P)

end

if (𝑜,𝑢′) /∈ store_scale then
store_scale[(𝑜,𝑢′)]←
ComputeScaleProb𝜚 (𝜖prv, 𝜖,𝑢, 𝑜, P)

end

end

res = VerifyPair(𝑢,𝑢′, 𝛿, store, store_scale)
if res = Not_DP then

𝑏 ← false
return Not_DP

end

if res = Unknown then

𝑏 ← false
end

end

if b then

return DP
end

return Unknown

The VerifyPair function
We now discuss the VerifyPair function (Algorithm 4). Given an
adjacent input pair 𝑢,𝑢′, the error parameter 𝛿 , the dictionaries
store and store_scale, and precision 𝜚 , VerifyPair is tasked with
proving or disproving differential privacy.

The function iterates over the set of outputs. For each output 𝑜, it
computes an upper bound and lower bound onmax(Prob[𝜖,𝑢, 𝑜, P]−
𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0) as follows. For each output 𝑜 , it retrieves
that intervals 𝐼𝑢 = [𝐿1,𝑈1] and 𝐼𝑢′ = [𝐿2,𝑈2], the intervals contain-
ing the Prob[𝜖,𝑢, 𝑜, P] and 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P] respectively. Now,
max(𝑈1 − 𝐿2, 0) (max(𝐿1 −𝑈2, 0), respectively) can be seen to be an
upper bound (lower bound, respectively) on max(Prob[𝜖,𝑢, 𝑜, P] −
𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0).

The upper bounds and lower bounds on max(Prob[𝜖,𝑢, 𝑜, P] −
𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0) are accumulated in ∆𝑚𝑎𝑥 and ∆𝑚𝑖𝑛 respec-
tively. Once the iteration over the set of outputs is over, VerifyPair
declares that P is differentially private for 𝑢,𝑢′ if ∆𝑚𝑎𝑥 ≤ 𝛿 and
not differentially private if ∆𝑚𝑖𝑛 > 𝛿. If neither ∆𝑚𝑎𝑥 ≤ 𝛿 not
∆𝑚𝑖𝑛 > 𝛿 , then VerifyPair returns Unknown.

Algorithm 4: VerifyPair

Function VerifyPair(𝑢,𝑢′, 𝛿, store, store_scale)
1 ∆𝑚𝑖𝑛 ← 0
2 ∆𝑚𝑎𝑥 ← 0
3 foreach 𝑜 ∈ V do

4 𝐼𝑢 ← store[(𝑜,𝑢)]
5 𝐼𝑢′ ← store_scale[(𝑜,𝑢′)]
6 𝐿1,𝑈1 ← LB(𝐼𝑢),UB(𝐼𝑢)
7 𝐿2,𝑈2 ← LB(𝐼𝑢′),UB(𝐼𝑢′)
8 ∆𝑚𝑎𝑥 ← ∆𝑚𝑎𝑥 + max(𝑈1 − 𝐿2, 0)
9 ∆𝑚𝑖𝑛 ← ∆𝑚𝑖𝑛 + max(𝐿1 −𝑈2, 0)

end

10 if ∆𝑚𝑎𝑥 ≤ 𝛿 then

11 return DP
end

12 if ∆𝑚𝑖𝑛 > 𝛿 then

13 return Not_DP
end

14 return Unknown

5.2 On the soundness and completeness of

VerifyDP𝜚
We show that VerifyDP𝜚 always gives a sound answer. Please see
Appendix B for the proof.

Lemma 4 (Soundness of VerifyDP𝜚). Given precision 𝜚, let the

output and scaled output probabilities be effectively 𝜚 -approximable.

Let P = (I,O, 𝑆) be a program with privacy parameter 𝜖. Let Φ be an

adjacency relation, 𝜖prv > 0 be a privacy budget and 𝛿 ∈ [0, 1] be an
error parameter.

(1) If VerifyDP𝜚 (P,Φ, 𝜖, 𝜖prv, 𝛿, 𝜖) returns Not_DP for precision 𝜚

then P does not satisfy (𝜖prv, 𝛿)-differential privacy with respect
to Φ.

(2) If VerifyDP𝜚 (P,Φ, 𝜖, 𝜖prv, 𝛿, 𝜖) returns DP for precision 𝜚 then

P satisfies (𝜖prv, 𝛿)-differential privacy with respect to Φ.

Now we show that, if P is not differentially private, then
VerifyDP𝜚 will return Not_DP for large enough precision, and if
P is differentially private then VerifyDP𝜚 will return DP for all
non-critical error parameters, for large enough precision. Please
see Appendix B for the proof.

Lemma 5 (Completeness of VerifyDP𝜚). Let the output probability

be effectively approximable for all precision 𝜚 . Let P = (I,O, 𝑆) be a
program with privacy parameter 𝜖. Let Φ be an adjacency relation,

𝜖prv > 0 be a privacy budget and 𝛿 ∈ [0, 1] be an error parameter.

(1) If P does not satisfy (𝜖prv, 𝛿)-differential privacy with

respect to Φ, then there is a precision 𝜚0 such that

VerifyDP𝜚 (P,Φ, 𝜖, 𝜖prv, 𝛿, 𝜖) returns Not_DP for each 𝜚 > 𝜚0 .
(2) If P satisfies (𝜖prv, 𝛿)-differential privacy with respect to Φ,

and 𝛿 ̸∈ DP,𝜖,𝜖prv,Φ (see Definition 4) then there is a precision

𝜚0 such that VerifyDP𝜚 (P,Φ, 𝜖, 𝜖prv, 𝛿, 𝜖) returns DP for each

𝜚 > 𝜚0 .

Approximate Algorithms for Verifying Differential Privacy with Gaussian Distributions Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Suppose, we run VerifyDP𝜚 repeatedly for P by incrementing
the precision 𝜚 until the algorithm returns DP or Not_DP. If P is
not differentially private then we are guaranteed to see Not_DP by
Lemma 5. If P is differentially private then wewill eventually seeDP
for all non-critical error parameters 𝛿 . Thus, if we can show that if
output probabilities are effectively approximable, we can conclude
that checking non-differential privacy of DiPGauss programs is
recursively enumerable, and decidable for all but a finite set of error
parameters. This is subject of the next section.

6 Approximating Output Probabilities

Assume that we are given a DiPGauss program P𝜖 = (I,O, 𝑆) with
privacy parameter 𝜖 . We describe the algorithm ComputeProb𝜚
that computes 𝜚 -approximants of Prob[𝜖,𝑢, 𝑜, 𝑃]. Fix 𝜖 > 0, 𝑢 and 𝑜 .
Recall that Prob[𝜖,𝑢, 𝑜, P] (See Section 4), is given by:

Prob[𝜖,𝑢, 𝑜, P] =
∑︁

𝜏∈𝜌(𝑢,𝑜,P)
Prob[𝜖, 𝜏].

For computing the above value, we need to compute Prob[𝜖, 𝜏], for
each final state 𝜏 ∈ 𝜌(𝑢, 𝑜, P). Furthermore, observe that since the
number of final states of a program is independent of the precision
𝜚, it suffices to show that there is an algorithm that produces a
𝜚0-approximant of Prob[𝜖, 𝜏] for given 𝜚0 .

Fix 𝜏 = (𝛼, 𝛽,𝐺). As given in Section 4, let 𝐺const and 𝐺rand
correspond to the set of guards in 𝐺 with comparison of do-
main variables and comparison of random variables, respec-
tively. Suppose evalc(𝐺const) = true. Then, Prob[𝜖, 𝜏] is given
by Prob[𝜖, evalr(𝐺rand)]. If evalc(𝐺const) = false, Prob[𝜖, 𝜏] = 0.
Since, evalc(𝐺const) can be easily computed, it suffices to show that
Prob[𝜖, evalr(𝐺rand)] can be computed up-to any precision.

Recall that the variables appearing in the guards of 𝐺rand are
all independent variables in R. Let r0, r1, . . . , r𝑛−1 denote the
variables that appear in the guards of 𝐺rand. Also, recall that
𝑋r0 , 𝑋r1 , . . . , 𝑋r𝑛−1 are independent random variables of Laplacian
or Gaussian distributions. Let 𝜇0, 𝜇1, . . . , 𝜇𝑛−1 denote the means
of these random variables, and let 𝜎0, 𝜎1, . . . , 𝜎𝑛−1 denote their
standard deviations, respectively. Let ℎ0, ℎ1, . . . , ℎ𝑛−1 be the corre-
sponding probability density functions of these random variables.
Observe that evalr(𝐺rand) is a conjunction of linear constraints over
𝑋r0 , 𝑋r1 , . . . , 𝑋r𝑛−1 .

We shall exploit the observation that the probability Prob[𝜖, 𝜏]
can be expressed as sum of nested definite integrals. The primary
challenge in exploiting this observation is that such integrals may
have∞ or −∞ as bounds. We will handle this challenge as follows.
Given a threshold th > 0, we can write Prob[𝜖, 𝜏] as bpr(𝜖, 𝜏, th) +
tpr(𝜖, 𝜏, th). Here bpr(𝜖, 𝜏, th) = Prob[𝜖, evalr(𝐺rand) ∧

∧
0≤𝑖≤𝑛−1

(𝜇𝑖 −

th · 𝜎𝑖 ≤ 𝑋r𝑖 ∧ {𝑋r𝑖 ≤ 𝜇𝑖 + th · 𝜎𝑖)}] is the probability of obtaining
output𝑜 on input𝑢 under the constraint that each sampled value𝑋r𝑖
in 𝜏 remains within th · 𝜎𝑖 from 𝜇𝑖 . The term tpr(·) accounts for the
tail probability, capturing cases where at least one sampled value𝑋r𝑖
deviates by at least th · 𝜎𝑖 from 𝜇𝑖 . As we shall argue shortly, bpr(·)
can be computed to any desired precision. Moreover, by known tail
bounds, we can always select th such that tpr(𝜖, 𝜏, th) arbitrarily
small. This will guarantee that Prob[𝜖, 𝜏] can be computed to any
required degree of precision. We have the following observation;
proof is in Appendix C.

Lemma 6 (Choosing th). There is an algorithm that given program

P, final state 𝜏 of P, rational number 𝜖 > 0, and precision 𝜚, outputs

th such that 0 ≤ tpr(𝜖, 𝜏, th) ≤ 1
2·2𝜚 .

6.1 Computing probabilities via integral

expressions

The computation of bpr(𝜖, 𝜏, th) for a given threshold th is accom-
plished by constructing a proper nested definite integral expres-
sion.6 To derive the integral expression, we analyze the set𝐺rand of
guards along with the set of the equations {𝜇𝑖 − th𝑖 · 𝜎𝑖 ≤ 𝑋r𝑖 | 0 ≤
𝑖 ≤ 𝑛 − 1} ∪ {𝑋r𝑖 ≤ 𝜇𝑖 + th𝑖 · 𝜎𝑖 | 0 ≤ 𝑖 ≤ 𝑛 − 1}.

An integral expression E over 𝑋r1 , . . . , 𝑋r𝑛 is said to be in nor-

malized form if there exists a permutation 𝜋 (0), 𝜋 (1), ..., 𝜋 (𝑛 − 1)
of the indices 0, ..., 𝑛 − 1 and rational constants 𝜃−0 , 𝜃0+, and lin-

ear functions 𝜃−
𝑖

(𝑦0, 𝑦1, ..., 𝑦𝑖−1), 𝜃+
𝑖

(𝑦0, 𝑦1, ..., 𝑦𝑖−1) in the variables
𝑦0, ..., 𝑦𝑖−1, for 1 ≤ 𝑖 ≤ 𝑛 − 1, such that

E =
∫𝜃+

0

𝜃−0

ℎ𝜋 (0)(𝑦0)
∫𝜃+

1

𝜃−1

ℎ𝜋 (1)(𝑦1) . . .
∫𝜃+

𝑛−1

𝜃−
𝑛−1

ℎ𝜋 (𝑛−1)(𝑦𝑛−1)𝑑𝑦𝑛−1 ...𝑑𝑦0

(5)

Lemma 7. bpr(𝜖, 𝜏, th) = Prob[𝜖, evalr(𝐺rand) ∧
∧

0≤𝑖≤𝑛−1
(𝜇𝑖 − th ·

𝜎𝑖 ≤ 𝑋r𝑖 ∧ {𝑋r𝑖 ≤ 𝜇𝑖 + th ·𝜎𝑖)}] is a finite sum of integral expressions

in normalized form over the random variables 𝑋r0 , ..., 𝑋r𝑛−1 .

The proof of the above lemma follows from the results of [15] and
uses the same approach as that used in the proof of Lemma 18 in [4].
We show that the output probabilities are effectively approximable
in the following theorem whose proof is located in Appendix D.

Theorem 8. The output probabilities are 𝜚 -approximable. That

is, there is an algorithm ComputeProb𝜚 (𝜖,𝑢, 𝑜, P) that takes inputs
𝜚, 𝜖,𝑢, 𝑜, P and returns a 𝜚 -approximation of Prob[𝜖,𝑢, 𝑜, P].

We get immediately from Lemma 4, Lemma 5 and Theorem 8 that
we can automatically check (𝜖prv, 𝛿)-differential privacy problem of
a DiPGauss program P𝜖 for all non-critical error parameters (See
Definition 4).

Theorem 9. The problem of determining if a DiPGauss program P𝜖
is not-(𝜖prv, 𝛿)-differentially private with respect to adjacency relation
Φ for a given 𝜖 > 0, 𝜖prv > 0, 𝛿 ∈ [0, 1] is recursively enumerable.

The problem of checking if P𝜖 is (𝜖prv, 𝛿)-differentially private with
respect to adjacency relation Φ is decidable for all 𝛿 ∈ [0, 1], except
those in the finite set DP,𝜖,𝜖prv,Φ .

6.2 Optimization of Integral Expressions

We will now present a method for transforming an integral ex-
pression E in normalized form into another equivalent integral
expression E′ , so that the depth of nesting of E′ is minimal to
enable efficient evaluation. Without loss of generality, consider the
integral expression E as given by the Equation 5. To do the transfor-
mation of E, we define a directed graph GE , called the dependency
graph of E, given by GE = (𝑉 , 𝐸), where 𝑉 = {r0, . . . , r𝑛−1} and 𝐸
is the set of edges (r𝜋 (ℓ), r𝜋 (𝑗)) such that 𝑦ℓ appears in either of the
linear expressions 𝜃−

𝑗
, 𝜃+

𝑗
, for 0 ≤ 𝑗, ℓ < 𝑛.

6By a definite proper integral, we mean an integral where the function being integrated
is continuous on a bounded finite interval, and both the limits of integration are finite.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Algorithm 5: Optimized Integral Expressions Generation
Input: G a Directed Acyclic Graph (DAG)
Output: Integral Expressions
Function GenExpr(G):

if G has WCCs G1, · · ·,G𝑛 then

return

(GenExpr(G1))(GenExpr(G2))· · ·(GenExpr(G𝑛))
end

if G is singleton node r𝜋 (𝑗) for some 𝑗, 0 ≤ 𝑗 < 𝑘 then

return

∫𝜃+
𝑗

𝜃−
𝑗

ℎ𝜋 (𝑗)(𝑦 𝑗)𝑑𝑦 𝑗

end

Let Src = {r𝜋 (𝑗0), · · ·, r𝜋 (𝑗ℓ−1)}, 0 < ℓ ≤ 𝑛 be source nodes

return

∫𝜃+
𝑗0

𝜃−
𝑗0

· · ·
∫𝜃+

𝑗ℓ−1

𝜃−
𝑗ℓ−1

ℓ−1∏
𝑖=0

ℎ𝜋 (𝑗𝑖) GenExpr(G
′)𝑑𝑦 𝑗ℓ−1 · · ·𝑑𝑦 𝑗0

where G′ = G \ Src

We propose a method that takes the dependency graph GE of
an integral expression as given in the Equation 5 and generates
an equivalent nested integral that has a minimal depth of nesting.
This method is given by the Algorithm 5. This algorithm consists
of a recursive function GenExpr that takes as input a sub-graph
of the dependency graph GE of an integral expression as given
in Equation 5. Initially the algorithm is invoked with GE as the
argument. The permutation 𝜋 used in the algorithm, in all recursive
invocations, is the permutation 𝜋 that is used in Equation 5.

The algorithm works as follows. Initially, it checks whether the
graph G has multiple Weakly Connected Components, in short
WCCs 7. If G has more than one WCC, the algorithm is invoked
recursively for each WCC, and the product of the resulting expres-
sions is returned. Observe that the depth of nesting of the resulting
integral expression is the maximum of the depths of integral ex-
pressions for the individual WCCs. Next, if the graph G consists of
a single node r𝜋 (𝑗), the algorithm returns the integral expression
of r𝜋 (𝑗). In the algorithm, for any node r𝜋 (𝑗), ℎ𝜋 (𝑗) is the density
function of the random variable 𝑋r𝜋 (𝑗) and the bounds of the inte-
gral are 𝜃−

𝑗
and 𝜃+

𝑗
which are given in Equation 5. Otherwise, it

identifies the source nodes Src. A node is a source node if it has no
incoming edge. The algorithm then constructs nested integrals cor-
responding to source nodes sequentially, and invokes the algorithm
on the reduced graph obtained by deleting these source nodes new
graph G \ Src. We discuss the impact of our optimization in the
experiments presented in Table 2.

Example 3. Consider Example 2 on Page 6. For the SVT-Gauss pro-
gram given in Algorithm 2, there is only one final state 𝜏 correspond-
ing to the output [0, 1] on input [0, 1],where 𝜏 = (𝛼, 𝛽,𝐺) in 𝜌(𝑢, 𝑜, P)
where 𝛼(𝑜𝑢𝑡1) = 0, 𝛼(𝑜𝑢𝑡2) = 1 and𝐺 = 𝐺rand = {r1 < r𝑇 , r2 ≥ r𝑇 }.

We can write bpr(𝜖, 𝜏, th) as the expression

E =
∫ th· 2

𝜖

−th· 2
𝜖

𝑓0, 2
𝜖

(r𝑇)
∫ r𝑇

−th· 4
𝜖

𝑓0, 4
𝜖

(r1)
∫1+th· 4

𝜖

r𝑇
𝑓1, 4

𝜖
(r2) 𝑑r2𝑑r1𝑑r𝑇 .

7A weakly connected component in a directed graph is a maximal sub-graph such that
the undirected version of the sub-graph, obtained by replacing each directed edge by
an undirected edge, is connected

Figure 2 shows the dependency graph for E . Finally, the optimiza-

r1 r𝑇 r2

Figure 2: Dependency graph of E in Example 3.

tion algorithm (Algorithm 5) rewrites E as∫ th· 2
𝜖

−th· 2
𝜖

𝑓0, 2
𝜖

(r𝑇)
(∫ r𝑇

−th· 4
𝜖

𝑓0, 4
𝜖

(r1)𝑑r1

) (∫1+th· 4
𝜖

r𝑇
𝑓1, 4

𝜖
(r2) 𝑑r2

)
𝑑r𝑇 .

7 Implementation and Evaluation

We implemented a simplified version of the algorithm, presented
earlier, called the toolDiPApprox. The tool is built using Python and
C++ and is designed to handle DiPGauss programs8, determining
whether they are differentially private, not differentially private, or
Unknown. Given an input program P and an adjacency relation Φ,
the tool checks differential privacy for fixed values of 𝜖 , 𝜖prv and 𝛿 .

DiPApprox uses three libraries: PLY [14] for program parsing,
igraph [24] for graph operations, and the FLINT library [50] for
computing integral expressions. After parsing the program, we
evaluate all final states of a program P (as given in Section 4). After-
wards, we represent each final state as a graph, perform the ordering
of integrals and compute their limits as described in Section 6. Once
such integral expressions are generated, we encode them in C++,
and use FLINT to compute the interval probabilities of each final
state for each input from the input pairs in the adjacency relation.
Additionally, the tool refines the precision level to a higher level
if the interval is too large to prove or disprove differential privacy.
DiPApprox is available for download at [3].

7.1 Examples

In this section, we present a limited set of examples from our bench-
mark suite due to space constraints. Details of the remaining exam-
ples and additional experimental results are provided in Appendix F
and Appendix G.

SVT Variants. We categorized SVT variants into three groups:
SVT with Gaussian noise, SVT with Laplace noise, and SVT with
mixed noise (where the threshold is sampled from a Laplace distri-
bution and the queries from a Gaussian distribution, or vice versa).
An example from the first category is SVT-Gauss (Algorithm 1).

Noisy-Max and Noisy-Min. In addition to the SVT variants, we
examine Noisy-Max and Noisy-Min with Gaussian or Laplacian
noise. The Noisy Max with Gaussian algorithm (see Appendix F.2)
selects the query with the highest value after independently adding
Gaussian noise to each query result. This approach obscures the
true maximum, ensuring differential privacy [29, 33].

𝑘-Min-Max and𝑚-Range. The 𝑘-Min-Max algorithm (for 𝑘 ≥ 2)
[19] perturbs the first 𝑘 queries, computes the noisy maximum and
minimum, and then checks whether each subsequent noisy query
falls within this range; if not, the algorithm exits. The 𝑚-Range
algorithm [19] perturbs 2𝑚 thresholds that define a rectangle of
𝑚 dimensions and checks whether noisy queries lie within these
8Currently, DiPApprox only supports comparison amongst sampled values.

Approximate Algorithms for Verifying Differential Privacy with Gaussian Distributions Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 3: Scaling behavior of SVT-Gauss, SVT-Laplace, and SVT-Mix1 with

varying input size 𝑁 for a single input pair.

noisy limits. While the original algorithms use Laplace noise, we
examine them also when the noise added is Gaussian.

7.2 Experiments

We evaluated DiPApprox on a macOS computer equipped with
a 1.4 GHz Quad-Core Intel Core i5 processor and 8GB of RAM.
Each example was executed three times, and the average execution
time was recorded across these runs. Recall that when converting
improper integrals with infinite limits into proper ones, we replace
−∞ and ∞ with tail bounds. We choose these bounds so that the
remaining area in the tails is very small. We use th = 4 for Gaussian
distributions and th = 8 for Laplace distributions while computing
these tail bounds and the error.We used an initial precision of 𝜚 = 16
bits, which was refined up to 32 bits if differential privacy could
not be verified. All pairs for input size 𝑁 refers to all pairs of input
vectors in {0, 1}𝑁 . Any pair of inputs in the {0, 1}𝑁 is adjacent. A
single pair of input size 𝑁 refers to the pair of vector (0𝑁 , 0𝑁−11),
where the first vector consists of 𝑁 zeros and the second vector
consists of 𝑁 − 1 zeros followed by a one.

Performance and Scalability. We experimented on variants of
SVT with input sizes from 1 to 26, on Noisy-Max and Noisy-Min
with input sizes from 1 to 5, on𝑚-Rangewith𝑚 = 2 and input sizes
from 1 to 3, and on 𝑘-Min-Max with 𝑘 = 2 and input sizes 3 and 4.
DiPApprox can verify whether a SVT-Gauss variant is differentially
private for a single input pair up to size 𝑁 = 25. For larger inputs,
it times out. Note that our timeout is set to 10 minutes; increasing
this limit would allow DiPApprox to handle more examples. As 𝑁
increases in the SVT variants, we encounter out-of-memory error
(O.M) while storing probabilities for the case of all input pairs
in the SVT variants as the number of input combinations grows
exponentially with 𝑁 . Performance results are presented in Table 1
and Figure 3 shows the scaling behavior with respect to input size
𝑁 and runtime for a single input pair.

Example 𝑁
Final

|𝐺 |
Avg. Single Pair All Pairs

States Depth DP? Time (s) DP? Time (s)

SVT-Gauss

2 3 1.7 2.3 ✓ 1.6 ✓ 2.4

5 6 3.3 2.7 ✓ 7.9 ✓ 76.7

25 26 13.5 2.9 ✓ 441.3 − O.M

SVT-Gauss-Leaky-1
5 6 3.3 1.7 × 1.0 × 1.4

6 7 3.9 1.7 × 1.0 × 2.1

SVT-Gauss-Leaky-2
3 4 2.2 1.5 × 1.0 × 1.0

6 7 3.9 1.7 × 1.0 × 1.1

SVT-Mix1

2 3 1.7 2.3 ✓ 2.4 ✓ 4.3

5 6 3.3 2.7 ✓ 19.5 ✓ 285.4

17 18 9.4 2.9 ✓ 365.7 − O.M

Noisy-Max-Gauss

2 2 1.0 2.0 ✓ 1.0 ✓ 1.3

3 4 2.0 2.5 ✓ 1.6 ✓ 3.1

4 8 3.0 3.0 ✓ 37.8 ✓ 303.0

Noisy-Min-Gauss

2 2 1.0 2.0 ✓ 1.0 ✓ 1.3

3 4 2.0 2.5 ✓ 1.6 ✓ 3.1

4 8 3.0 3.0 ✓ 36.8 ✓ 303.6

𝑚-Range-Gauss
1 7 3.0 2.5 ✓ 1.5 ✓ 1.8

2 13 4.2 3.2 ✓ 171.2 ✓ 344.4

3 19 5.2 3.8 − T.O − T.O

𝑘-Min-Max-Gauss
3 16 4.0 3.0 ✓ 2.1 ✓ 5.7

4 28 5.1 3.4 ✓ 41.2 ✓ 335.7
Table 1: Summary of Experimental Results for DiPApprox. The columns in the

table are defined as follows: 𝑁 is the input size of the program. DP? indicates

whether the program is differentially private. Final States denotes the number

of final states. |𝐺 | and Avg. Depth, respectively, denote the average number of

conditions and the average nesting depth of integral expressions, per final state.

Time is the average time (in seconds) to verify differential privacy, measured

over three runs. T.O indicates a timeout (exceeding 10 minutes), and O.M
denotes a run out of memory. Differential privacy checks were performed

with 𝜖 = 0.5 and 𝛿 = 0.01, except for SVT-Gauss-Leaky-1, which uses 𝜖 = 8. We

used 𝜖prv = 0.5, except for SVT-Gauss and SVT-Mix1, where 𝜖prv = 1.24.

Impact of Optimization. We conducted experiments to evaluate
the impact of the optimized integral ordering presented in Algo-
rithm 5 on SVT-Gauss, SVT-Laplace, SVT-Mix1, and Noisy-Max-
Gauss with input sizes ranging from 𝑁 = 1 to 𝑁 = 5. We compared
the performance of the unoptimized version (which uses topologi-
cal sorting for integral ordering) with the optimized version. The
results indicate that the optimized approach leads to a significant
reduction in the maximum integration depth for all examples. These
improvements also translate into substantial reductions in the over-
all running time. Table 2 summarizes the optimization results.

7.3 Comparison with DiPC
We compare the performance of our tool,DiPApprox, withDiPC [4].
We choseDiPC for comparison as it allows for verification of approx-
imate differential privacy (and not just pure differential privacy), i.e.,
it allows for verifying (𝜖prv, 𝛿) differential privacy for fixed values of
𝜖, 𝜖prv and 𝛿. Like DiPApprox, DiPC checks differential privacy for
programs where both inputs and outputs are drawn from a finite
domain and have bounded length. The key differences between
DiPC and DiPApprox are as follows: (1) Unlike DiPApprox, DiPC
does not support Gaussian distributions; (2) DiPC can check pure
differential privacy for all values of 𝜖 > 0 as well as for fixed values
of 𝜖 . It also checks (𝜖prv, 𝛿) differential privacy for fixed values of
𝜖, 𝜖prv and 𝛿. DiPApprox, on the other hand can only check for

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Example 𝑁

Unoptimized Optimized

Max Avg.
Time (s)

Max Avg.
Time (s)

Depth Depth Depth Depth

SVT-Gauss

1 2 2.0 1.03 2 2.0 1.0

2 3 2.67 2.27 3 2.3 1.6

3 4 3.25 T.O 3 2.5 2.77

4 5 3.8 T.O 3 2.6 3.48

5 6 4.33 T.O 3 2.7 7.9

SVT-Mix1

1 2 2.0 1.01 2 2.0 0.94

2 3 2.67 7.62 3 2.3 2.4

3 4 3.25 T.O 3 2.5 7.88

4 5 3.8 T.O 3 2.6 11.8

5 6 4.33 T.O 3 2.7 19.5

Noisy-Max-Gauss

2 2 2.0 0.98 2 2.0 1.0

3 3 3.0 3.53 3 2.5 1.6

4 4 4.0 T.O 4 3.0 37.8

5 5 5.0 T.O 5 3.5 T.O

Table 2: Summary of optimization results for DiPApprox. The columns in the

table are as follows: 𝑁 represents the input size for the program. Time refers

to the time taken to check differential privacy for a single pair, measured in

seconds and averaged over three executions. T.O indicates a timeout (exceeding

10 minutes). Avg. Depth refers to the average nested depth of integrals across

all executions. Max Depth refers to the maximum nested depth among all

executions. Differential privacy checks were performed with 𝜖 = 0.5 and

𝛿 = 0.01. We used 𝜖prv = 1.24 for SVT-Gauss and SVT-Mix1, and 𝜖prv = 0.5 for

Noisy-Max-Gauss.

Example 𝑁 𝜖
Time (s)

Speedup DP?
DiPC [4] DiPApprox

SVT-Laplace

1 0.5 25 1 25.0 ✓

2 0.5 106 32 3.31 ✓

3 0.5 578 279 2.07 ✓

4 0.5 2850 1638 1.74 ✓

Noisy-Max-Laplace
3 1 278 166 1.67 ✓

3 0.5 311 152 2.05 ✓

Noisy-Min-Laplace
3 1 180 165 1.09 ✓

3 0.5 286 154 1.86 ✓

SVT-Laplace-Leaky-4 2 1 80 167 0.48 ×
SVT-Laplace-Leaky-5 2 0.5 7 1 7.0 ×
SVT-Laplace-Leaky-6 3 1 526 1075 0.49 ×

Table 3: Summary of comparison with DiPC. The table reports performance

for both tools. The columns are as follows: 𝑁 denotes the input size of the

program. Time indicates the average time (in seconds) to verify differential

privacy over three runs. DP? indicates whether the program is differentially

private. Speedup represents the ratio of the time taken by DiPC to that of

DiPApprox, indicating the relative performance gain. Differential privacy

checks were performed with 𝛿 = 0. For all examples in the table, 𝜖prv = 𝜖 .

fixed values of 𝜖prv and 𝛿 . (3) DiPC relies on the proprietary soft-
ware Wolfram Mathematica® for checking the encoded formulas,
whereas DiPApprox uses the open-source library FLINT.

Our comparison is summarized in Table 3. DiPC takes more time
to determine differential privacy for most examples. In some cases,
DiPApprox significantly outperforms DiPC in verification time.

7.4 Discussion

Some salient insights from our experiments are as follows.
(1) DiPApprox can determine whether programs in DiPGauss are

differentially private or not differentially private for several
interesting examples. If a program is not differentially private,
it provides a counterexample.

(2) DiPApprox demonstrates scalability, handling input sizes of up
to 25 for some SVT variants in the case of a single input pair.

(3) The optimization algorithm significantly reduces the running
time, achieving a substantial decrease, and lowers the nested
depth of integral expressions.

(4) Verification involving the Laplace distribution takes longer than
the Gaussian distribution. The Laplace distribution does not
have a holomorphic extension to the complex numbers as it
involves an absolute value term. This makes integration in
FLINT more computationally intensive.

8 Related Work

Differential privacy was first introduced in [30]. For a comprehen-
sive introduction to the topic, techniques, and results, consult the
recent book [33] and survey [23]. Industry implementation of dif-
ferential privacy include U.S. Census Bureau’s LEHD OnTheMap
tool [42], Google’s RAPPOR system [34], Apple’s DP implementa-
tion [27, 51], and Microsoft’s Telemetry collection [28].

The subtle nature of the correctness proofs of differential privacy
has prompted an interest in developing automated techniques to
verify them. The main approaches to verification include the use
of type systems [25, 26, 35, 45, 53, 55], probabilistic coupling [1,
7, 11, 13], using shadow executions [54], and simulation-based
methods [52], and machine-checked proofs [48, 49].

Automated methods for verifying privacy include the use of
hypothesis testing [29], symbolic differentiation [16], and program
analysis [4, 19, 53]. Notably, [19, 53] even allow for verification
with unbounded inputs, and for any 𝜖 > 0. However, they do not
allow sampling from Gaussians, and verify only pure differential
privacy (i.e., 𝛿 = 0).

Probabilistic model checking-based approaches are used in [20,
22, 40], where it is assumed that the program is given as a finite
Markov Chain, 𝜖 is fixed to a concrete value. Sampling from contin-
uous random variables is not allowed in [20, 22, 40]. Almost all the
automated methods discussed so far are of checking 𝜖-differential
privacy; none work for (𝜖, 𝛿)-differential privacy, except for [4].

The decision problem of checking (𝜖, 𝛿)-differential privacy (and
therefore also 𝜖-differential privacy) was studied in [4] where the
problem was shown to be undecidable in general, and a decidable
sub-class of programs that sample from Laplacians was identified.
Smaller classes of algorithms that use sampling from Laplacians
and comparison of sampled values were identified in [18, 19] where
it was shown that for them, the verification for unbounded inputs
is decidable. The complexity of deciding differential privacy for
randomized Boolean circuits and while programs is shown to be
coNP#P-complete and PSPACE-complete in [36] and [17] respec-
tively when the number of inputs is finite, probabilistic choices are
fair coin tosses and 𝑒𝜖 is a rational number.

None of the automated verification approaches discussed above
verify differential privacy of programs that sample from Gaussians.

9 Conclusions and Future Work

We addressed the problem of verifying differential privacy for pa-
rameterized programs that support sampling from Gaussian and
Laplace distributions, and operate over finite input and output
domains. For a class of loop-free programs called DiPGauss, we

Approximate Algorithms for Verifying Differential Privacy with Gaussian Distributions Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

showed that the problem of determining if a given program P, with
privacy parameter 𝜖 , is (𝜖prv, 𝛿)-differential privacy for given ra-
tional values 𝜖 > 0, 𝜖prv > 0, and 𝛿 ∈ [0, 1] is almost decidable:
it is decidable for all values of 𝛿 in [0, 1], except for a finite set
of exceptional values determined by P, 𝜖 , 𝜖prv, and the adjacency
relation. We establish this through an algorithm, VerifyDP𝜚 , which
outputs one of three results: DP, Not_DP, or Unknown. Our imple-
mentation of VerifyDP𝜚 leverages the FLINT library for evaluating
definite integrals and incorporates several performance optimiza-
tions, such as reducing the nesting depth of integrals to enhance
scalability on practical benchmarks. The algorithm is implemented
in our tool DiPApprox and has been empirically evaluated on a
variety of examples drawn from the literature.

For future work, it would be interesting to explore extensions
in three directions: (i) allowing unbounded loops as well as non-
linear functions of real variables in programs, (ii) generalizing input
and output domains to real or rational values, and (iii) enabling
the privacy parameter 𝜖 to range over an interval, with 𝜖prv (or 𝛿)
specified as a function of 𝜖 (or 𝜖prv, respectively).

Acknowledgements. This work was partially supported by the Na-
tional Science Foundation: Bishnu Bhusal and Rohit Chadha were
partially supported by grant CCF 1900924, A. Prasad Sistla was par-
tially supported by grant CCF 1901069, and Mahesh Viswanathan
was partially supported by grants CCF 1901069 and CCF 2007428.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

References

[1] Aws Albarghouti and Justin Hsu. 2018. Synthesizing coupling proofs of differen-
tial privacy. In Proceedings of the ACM Symposium on the Principles of Program-

ming Languages. 58:1–58:30.
[2] Kareem Amin, Alex Bie, Weiwei Kong, Alexey Kurakin, Natalia Ponomareva,

Umar Syed, Andreas Terzis, and Sergei Vassilvitskii. 2024. Private prediction for
large-scale synthetic text generation. In Findings of the Association for Computa-

tional Linguistics: EMNLP 2024, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen (Eds.). Association for Computational Linguistics, Miami, Florida, USA,
7244–7262. doi:10.18653/v1/2024.findings-emnlp.425

[3] Anonymous. 2025. Artifact for Approximate Algorithms for Verifying Differen-
tial Privacy with Gaussian Distributions. https://anonymous.4open.science/r/
approximate-dp-CA17/README.md.

[4] G. Barthe, R. Chadha, V. Jagannath, A.P. Sistla, and M. Viswanathan. 2020. De-
ciding Differential Privacy for Programs with finite inputs and outputs. In Pro-

ceedings of the IEEE Symposium on Logic in Computer Science. 141–154.
[5] G. Barthe, R. Chadha, P. Krogmeier, A.P. Sistla, and M. Viswanathan. 2021. De-

ciding accuracy of differentially private schemes. In Proceedings of the ACM

Symposium on the Principles of Programming Languages. 1–30.
[6] G. Barthe, G.P. Farina, M. Gaboardi, E.J.G. Arias, A. Gordon, J. Hsu, and P.-Y.

Strub. 2016. Differentially private Bayesian programming. In Proceedings of the

ACM SIGSAC Conference on Computer and Communications Security. 68–79.
[7] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu,

and Pierre-Yves Strub. 2016. Advanced Probabilistic Couplings for Differential
Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security (CCS). 55–67.
[8] G. Barthe, M. Gaboardi, E.J. Arias, J. Hsu, C. Kunz, and P. Strub. 2014. Proving

Differential Privacy in Hoare Logic. In Proceedings of the 2014 IEEE 27th Computer

Security Foundations Symposium (CSF14). IEEE Computer Society, 266–277.
[9] G. Barthe, M. Gaboardi, E.J.G. Arias, J. Hsu, A. Roth, and P.-Y. Strub. 2015. Higher-

order approximate relational refinement types for mechanism design and dif-
ferential privacy. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. 55–68.
[10] G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P. Strub. 2016. A program logic

for union bounds. In Proceedings of the International Colloquium on Automata,

Languages, and Programming. 107:1–1–7:15.
[11] G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P. Strub. 2016. Proving differential

privacy via probabilistic couplings. In Proceedings of the IEEE Symposium on Logic

in Computer Science. 749–758.
[12] G. Barthe, B. Köpf, F. Olmedo, and S.Z. Béguelin. 2012. Probabilistic reasoning

for differential privacy. In Proceedings of the ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages. 97–110.
[13] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella-Béguelin. 2013.

Probabilistic Relational Reasoning for Differential Privacy. ACM Transactions on

Programming Languages and Systems 35, 3 (2013), 9.
[14] David Beazley. 2022. GitHub - dabeaz/ply: Python Lex-Yacc — github.com. https:

//github.com/dabeaz/ply. [Accessed 24-Jan-2023].
[15] Daniel Berend and Luba Bromberg. 2006. Uniform decompositions of polytopes.

Applicationes Mathematicae 33 (01 2006), 243–252. doi:10.4064/am33-2-7
[16] Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov, and Mar-

tin T. Vechev. 2018. DP-Finder: Finding Differential Privacy Violations by Sam-
pling and Optimization. In Proceedings of the ACM SIGSAC Conference on Com-

puter and Communications Security. 508–524.
[17] M. Bun, M. Gaboardi, and L. Glinskih. 2022. The Complexity of Verifying Boolean

Programs as Differentially Private. In 2022 IEEE 35th Computer Security Founda-

tions Symposium (CSF). 396–411. doi:10.1109/CSF54842.2022.9919653
[18] R. Chadha, A.P. Sistla, and M. Viswanathan. 2021. On Linear time decidability of

differential privacy for programs with unbounded inputs. In Proceedings of the

IEEE Symposium on Logic in Computer Science. 1–13.
[19] R. Chadha, A.P. Sistla, M. Viswanathan, and B. Bhusal. 2023. Deciding Differential

Privacy of Online Algorithms with Multiple Variables. In Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security. 1761–1775.
[20] Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu.

2014. Generalized Bisimulation Metrics. In 35th International Conference on

Concurrency Theory (CONCUR). 32–46.
[21] Yan Chen and Ashwin Machanavajjhala. 2015. On the Privacy Properties of

Variants on the Sparse Vector Technique. CoRR abs/1508.07306 (2015).
[22] D. Chistikov, S. Kiefer, A. S. Murawski, and D. Purser. 2020. The Big-O Problem for

Labelled Markov Chains andWeighted Automata. In 31st International Conference

on Concurrency Theory (CONCUR) (LIPIcs, Vol. 171). 41:1–41:19.
[23] G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, and T. Wang. 2018. Privacy

at Scale: Local Differential Privacy in Practice. In Proceedings of the International

Conference on Management of Data. 1655–1658.
[24] Gabor Csardi and Tamas Nepusz. 2006. The igraph software package for complex

network research. InterJournal Complex Systems (2006), 1695. https://igraph.org

[25] Arthur Azevedo de Amorim, Marco Gaboardi, Emilio Jesús Gallego Arias, and
Justin Hsu. 2014. Really Natural Linear Indexed Type Checking. In 26th 2014 Inter-
national Symposium on Implementation and Application of Functional Languages

(IFL). 5:1–5:12.
[26] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, and Shin-ya Katsumata.

2019. Probabilistic Relational Reasoning via Metrics. In Proceedings of the IEEE

Symposium on Logic in Computer Science. 1–19.
[27] Apple Differential Privacy Team. 2017. Learning with privacy at scale.
[28] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting Telemetry

Data Privately. In Advances in Neural Information Processing Systems 30. 3571–
3580.

[29] Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer.
2018. Detecting Violations of Differential Privacy. In Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security. 475–489.
[30] C. Dwork, F. McSherry, K. Nissim, and A. Smith. 2006. Calibrating noise to

sensitivity in private data analysis. In Proceedings of the International Conference

on Theory of Cryptography. 265–284.
[31] C. Dwork, M. Naor, O. Reingold, G. Rothblum, and S. Vadhan. 2009. On the

complexity of differentially private data release: Efficient algorithms and hardness
results. In Proceedings of the ACM Symposium on Theory of Computation. 381–390.

[32] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P.
Vadhan. 2009. On the complexity of differentially private data release: efficient
algorithms and hardness results. In Proceedings of the Annual ACM Symposium

on Theory of Computing (STOC). 381–390.
[33] Cynthia Dwork and Aron Roth. 2014. The Algorithmic Foundations of Differen-

tial Privacy. Foundations and Trends in Theoretical Computer Science, Vol. 9.
Springer. 211–407 pages.

[34] U. Erlingsson, V. Pihur, and A. Korolova. 2014. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the ACM SIGSAC conference

on computer and communications security. 1054–1067.
[35] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B.C. Pierce. 2013. Linear

Dependent Types for Differential Privacy. In Proceedings of the ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. 357–370.
[36] Marco Gaboardi, Kobbi Nissim, and David Purser. 2020. The Complexity of

Verifying Loop-Free Programs as Differentially Private. In 47th International

Colloquium on Automata, Languages, and Programming, (ICALP) (LIPIcs, Vol. 168).
129:1–129:17.

[37] A. Gupta, A. Roth, and J. Ullman. 2012. Iterative constructions and provate data
release. In Proceedings of the International Conference on Theory of Cryptography.
339–356.

[38] M. Hardt and G.N. Rothblum. 2010. A multiplicative weights mechanism for
privacy-preserving data analysis. In Proceedings of the IEEE Symposium on the

Foundations of Computer Science. 61–70.
[39] K.-I. Ko. 1991. Complexity Theory of Real Functions. Birkhauser.
[40] Depeng Liu, Bow-Yaw Wang, and Lijun Zhang. 2018. Model Checking Differ-

entially Private Properties. In Programming Languages and Systems - 16th Asian

Symposium, (APLAS) (Lecture Notes in Computer Science, Vol. 11275). 394–414.
[41] M. Lyu, D. Su, and N. Li. 2017. Understanding the Sparse Vector technique for

differential privacy. Proceedings of VLDB 10, 6 (2017), 637–648.
[42] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. 2008. Privacy:

From theory to practice on the map. In Proceedings of the IEEE International

Conference on Data Engineering. 277–286.
[43] F. McSherry. 2009. Privacy integrated queries: An extensible platform for privacy-

preserving data analysis. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data. 19–30.
[44] P. Mohan, A. Thakurta, E. Shi, D. Song, and E. Culler. 2012. Gupt: Privacy pre-

serving data analysis made easy. In Proceedings of the ACM SIGMOD International

Conference on Management of Data.
[45] J. Reed and B.C. Pierce. 2010. Distance makes the types grow stronger: A cal-

culus for differential privacy. In Proceedings of the ACM SIGPLAN International

Conference on Functional Programming. 157–168.
[46] Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh

Viswanathan. 2025. Checking 𝛿-Satisfiability of Reals with Integrals. Proc.

ACM Program. Lang. 9, OOPSLA1, Article 105 (April 2025), 26 pages. doi:10.1145/
3720446

[47] I. Roy, S. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. 2010. Airavat: Security and
privacy for MapReduce. In Proceedings of the USENIX Conference on Networked

Systems Design and Implementation.
[48] Tetsuya Sato and Yasuhiko Minamide. 2025. Differential Privacy. Archive of

Formal Proofs (January 2025). https://isa-afp.org/entries/Differential_Privacy.
html, Formal proof development.

[49] Tetsuya Sato and Yasuhiko Minamide. 2025. Formalization of Differential Privacy
in Isabelle/HOL. In Proceedings of the 14th ACM SIGPLAN International Conference

on Certified Programs and Proofs. 67–82.
[50] The FLINT team. 2023. FLINT: Fast Library for Number Theory. Version 3.0.0,

https://flintlib.org.
[51] A.G. Thakurta, A.H. Vyrros, U.S. Vaishampayan, G. Kapoor, J. Freudiger, V.R.

Sridhar, and D. Davidson. 2017. Learning new words. US Patent 9,594,741.

https://doi.org/10.18653/v1/2024.findings-emnlp.425
https://anonymous.4open.science/r/approximate-dp-CA17/README.md
https://anonymous.4open.science/r/approximate-dp-CA17/README.md
https://github.com/dabeaz/ply
https://github.com/dabeaz/ply
https://doi.org/10.4064/am33-2-7
https://doi.org/10.1109/CSF54842.2022.9919653
https://igraph.org
https://doi.org/10.1145/3720446
https://doi.org/10.1145/3720446
https://isa-afp.org/entries/Differential_Privacy.html
https://isa-afp.org/entries/Differential_Privacy.html
https://flintlib.org

Approximate Algorithms for Verifying Differential Privacy with Gaussian Distributions Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[52] Michael Carl Tschantz, Dilsun Kirli Kaynar, and Anupam Datta. 2011. Formal
Verification of Differential Privacy for Interactive Systems (Extended Abstract).
In 27th Conference on the Mathematical Foundations of Programming Semantics

(MFPS) (Electronic Notes in Theoretical Computer Science, Vol. 276). 61–79.
[53] Yuxin Wang, Zeyu Ding, Daniel Kifer, and Danfeng Zhang. 2020. CheckDP: An

Automated and Integrated Approach for Proving Differential Privacy or Finding
Precise Counterexamples. In 2020 ACM SIGSAC Conference on Computer and

Communications Security (CCS). 919–938.
[54] YuxinWang, Zeyu Ding, GuanhongWang, Daniel Kifer, and Danfeng Zhang. 2019.

Proving differential privacy with shadow execution. In Proceedings of the 40th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

(PLDI). 655–669.
[55] D. Zhang and D. Kifer. 2017. LightDP: Towards Automating Differential Privacy

Proofs. In 44th ACM Symposium on Principles of Programming Languages (POPL17).
Association for Computing Machinery, 266–277.

[56] Yuqing Zhu and Yu-Xiang Wang. 2020. Improving sparse vector technique with
renyi differential privacy. Advances in neural information processing systems 33
(2020), 20249–20258.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

A Proof of Lemma 2

(⇒) Let P be (𝜖prv, 𝛿) differentially private and 𝑢,𝑢′ ∈ Φ. By setting
𝐹 = {𝑜 ∈ V | Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P] > 0}, we can
conclude that Equation (4) is true for 𝜖, P, 𝑢,𝑢′ as follows.

∑
𝑜∈V max(Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0)
= ∑

𝑜∈F max(Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0)
+ ∑

𝑜∈V\F max(Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0)

For 𝑜 ∈ 𝐹 , we have that

max(Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0)
= Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P].

For 𝑜 /∈ 𝐹 , we have that

max(Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0) = 0

.
Thus, ∑

𝑜∈V max(Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0) =∑
𝑜∈F Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P] ≤ 𝛿 as P is (𝜖prv, 𝛿) dif-

ferentially private.
(⇐) This direction follows from the observation that for each

𝑢,𝑢′ and arbitrary 𝐹 ⊆ V,∑
𝑜∈𝐹 Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prv ∑

𝑜∈𝐹 Prob[𝜖,𝑢′, 𝑜, P]
= ∑

𝑜∈𝐹 (Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P])
≤ ∑

𝑜∈𝐹 max(Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0)
≤ ∑

𝑜∈V max(Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0).

The second last line of the above sequence of inequalities follow
from the fact that for any real number 𝑎, 𝑎 ≤ max(𝑎, 𝑏). The last
line follows from the fact that for all 𝑜 ̸∈ 𝐹,max(Prob[𝜖,𝑢, 𝑜, P] −
𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0) ≥ 0.

B Proofs of Lemma 4 and Lemma 5

We prove both Lemma 4 and Lemma 5 together. Let (𝑢,𝑢′) ∈ Φ. Let

𝛿𝑢,𝑢′ =
∑︁
𝑜∈V

max(Prob[𝜖,𝑢, 𝑜, P] − 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P], 0).

Let 𝑜 ∈ V be an output. After VerifyDP𝜚 processes (𝑢,𝑢′) and
the output 𝑜 , let 𝐿1(𝑢, 𝑜),𝑈1(𝑢, 𝑜), 𝐿2(𝑢′, 𝑜), and 𝑈2(𝑢′, 𝑜) be such
that values store(𝑢, 𝑜) = [𝐿1(𝑢, 𝑜),𝑈2(𝑢, 𝑜)] and store_scale[𝑢′, 𝑜] =
[𝐿2(𝑢′, 𝑜),𝑈2(𝑢′, 𝑜)].

We have the following equations:

𝐿1(𝑢, 𝑜) ≤ Prob[𝜖,𝑢, 𝑜, P] ≤ 𝐿1(𝑢, 𝑜) + 1
2𝜚

𝑈1(𝑢, 𝑜) ≥ Prob[𝜖,𝑢, 𝑜, P] ≥ 𝑈1(𝑢, 𝑜) − 1
2𝜚

𝐿2(𝑢′, 𝑜) ≤ 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P] ≤ 𝐿2(𝑢, 𝑜) + 1
2𝜚

𝑈2(𝑢′, 𝑜) ≥ 𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P] ≥ 𝑈2(𝑢, 𝑜) − 1
2𝜚 .

This implies that

𝐿1(𝑢, 𝑜) −𝑈2(𝑢′, 𝑜) ≤ Prob[𝜖,𝑢, 𝑜, P]−𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P]

≤ 𝐿1(𝑢, 𝑜) −𝑈2(𝑢′, 𝑜) + 2
2𝜚

and

𝑈1(𝑢, 𝑜) − 𝐿2(𝑢′, 𝑜) ≥ Prob[𝜖,𝑢, 𝑜, P]−𝑒𝜖prvProb[𝜖,𝑢′, 𝑜, P]

≥ 𝑈1(𝑢, 𝑜) − 𝐿2(𝑢′, 𝑜) − 2
2𝜚 .

Therefore, when VerifyPair(𝑢,𝑢′, 𝛿, store, store_scale) is executed
then at the end of the for loop in VerifyPair, the following equations
hold.

∆𝑚𝑖𝑛 ≤ 𝛿𝑢,𝑢′ ≤ ∆𝑚𝑖𝑛 + 2|V|
2𝜚 (6)

∆𝑚𝑎𝑥 ≥ 𝛿𝑢,𝑢′ ≥ ∆𝑚𝑎𝑥 −
2|V|
2𝜚 . (7)

Finishing Lemma 4 Proof. It is easy to see that Equation 6 and
Equation 7 imply the two parts of the of Lemma 4.

Finishing Lemma 5 Proof. Recall that if output probabilities are
effectively approximable, then so are scaled output probabilities.
(Proposition 3). For part one of the Lemma 5, observe that Equation 6
implies that

∆𝑚𝑖𝑛 ≥ 𝛿𝑢,𝑢′ −
2|V|
2𝜚

and thus

∆𝑚𝑖𝑛 − 𝛿 ≥ (𝛿𝑢,𝑢′ − 𝛿) − 2|V|
2𝜚 .

Now, part one of the Lemma 5 follows from the observation
that if P is not differentially private then there must be (𝑢,𝑢′) ∈ Φ
such that 𝛿𝑢,𝑢′ − 𝛿 > 0 and hence there is a precision 𝜚0 such
(𝛿𝑢,𝑢′ − 𝛿) − 2 |V |

2𝜚0 > 0.
For part two of the Lemma 5, observe that we have from Equa-

tion 7 that for each (𝑢,𝑢′) ∈ Φ,

−∆𝑚𝑎𝑥 + 2|V|
2𝜚 ≥ −𝛿𝑢,𝑢′ .

Hence,

𝛿 − ∆𝑚𝑎𝑥 ≥ (𝛿 − 𝛿𝑢,𝑢′) −
2|V|
2𝜚 .

Now if P is differentially private and 𝛿 /∈ DP,𝜖,𝜖prv,Φ, then 𝛿 −
𝛿𝑢,𝑢′ > 0 for each (𝑢,𝑢′) ∈ Φ. As there are only a finite number of
pairs (𝑢,𝑢′) ∈ Φ, it implies that

min
(𝑢,𝑢′)∈Φ

(𝛿 − 𝛿𝑢,𝑢′) > 0.

From this, it is easy to see that there is a precision 𝜚0 such that
(𝛿 − 𝛿𝑢,𝑢′) − 2 |V |

2𝜚0 > 0 for each (𝑢,𝑢′) ∈ Φ. Thus, VerifyPair will
return DP for each (𝑢,𝑢′) ∈ Φ when run with precision 𝜚0 .

C Proof of Lemma 6

Given a threshold th, it is easy to see that 0 ≤ tpr(𝜖, 𝜏, th) ≤∑𝑛−1
𝑖=0 tl(th, 𝑋r𝑖 , 𝜇𝑖 , 𝜎𝑖). From the known tail bounds (See Section 2),

we know that that, for each 𝑖 , there is a monotonically decreas-
ing function 𝑘𝑖 (·) such that tl(th, 𝑋r𝑖 , 𝜇𝑖 , 𝜎𝑖) ≤ 𝑘𝑖 (th). Furthermore,
limth→∞ 𝑘𝑖 (th) = 0. From these observations and the known tail
bounds, we can choose th𝑖 such that 0 ≤ tl(th, 𝑋r𝑖 , 𝜇𝑖 , 𝜎𝑖) ≤ 1

2𝑛2𝜚 for
each th ≥ th𝑖 . The result follows by choosing th = max0≤𝑖≤𝑛−1 th𝑖 .

Approximate Algorithms for Verifying Differential Privacy with Gaussian Distributions Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

D Proof of Theorem 8

Thanks to Lemma 6, it suffices to show that we can compute a
𝜚 + 1-approximation [𝐿,𝑈] of bpr(𝜖, 𝜏, th). From our previous argu-
ments, it follows that bpr(𝜖, 𝜏, th) can be obtained as a finite sum of
normalized integral expressions of the form E shown above. All the
constants and coefficients of the linear functions used as limits of
integrals in the different summands can be obtained algorithmically
from the values of th, 𝜖,𝑢, 𝑜, P. The result now follows from the fact
that all the probability density functions in DiPGauss are com-
putable, and that the set of computable functions are closed under
summation, definite proper integration, and composition. [39, 46].

E Correctness of Algorithm 5

Algorithm 5 is given by a recursive function GenExpr(G), which
takes the dependency graph G of an integral expression 𝐸 in nor-
malized form as an argument and outputs an integral expression
equivalent to 𝐸, i.e., has the same value as 𝐸 for any given values
to the free variables in 𝐸; note 𝐸 will not have free variables during
the first invocation of GenExpr(), but in the subsequent recursive
invocations the expression 𝐸 (corresponding to the argument G),
may have free variables which appear in the limits of the integrals
appearing in 𝐸.

Each node in G represents a random variable and an edge (𝑢, 𝑣)
in G indicates that the variable 𝑢 appears in the lower or upper
limit of the integral corresponding to the variable 𝑣 .

If G has more than one weakly connected component, say G
has two such components G1,G2. The integrals corresponding to
the variables in G1 can be moved leftwards to the front retaining
their order of occurrence in 𝐸, resulting in an expression which
is a product of two expressions 𝐸1 (corresponding to G1) and 𝐸2 (
corresponding to G2). The resulting product expression is equiv-
alent to 𝐸 since none of the variables in 𝐺1 depend on those in
G2. This argument generalizes when G has more than two weakly
connected components. This argument holds for the recursive in-
vocation GenExpr(G′) in the return statement of the function.

F Pseudocode of Examples

We present a short description and pseudo-code of the examples
from our benchmark suite.

F.1 SVT variants

Wehave the following variants: SVT-Gauss, SVT-Laplace, SVT-Mix1,
and SVT-Mix2. These are similar algorithms that differ only in the
distributions from which they sample noise. SVT-Gauss samples
both the threshold and the queries from a Gaussian distribution.
SVT-Laplace samples both from a Laplace distribution. SVT-Mix1
samples the threshold from a Gaussian distribution and the queries
from a Laplace distribution, while SVT-Mix2 does the opposite.
These algorithms output ⊤ when the noisy query result is less than
or equal to the noisy threshold; otherwise, they output ⊥. We also
have non-private variants of SVT-Gauss: SVT-Gauss-Leaky-1 and
SVT-Gauss-Leaky-2. SVT-Gauss-Leaky-1 compares noisy queries
with a non-noisy threshold, whereas SVT-Gauss-Leaky-2 compares
a noisy threshold with non-noisy queries. Additionally, we consider

four non-private variants of SVT-Laplace, borrowed from [4]: SVT-
Laplace-Leaky-3, SVT-Laplace-Leaky-4, SVT-Laplace-Leaky-5, and
SVT-Laplace-Leaky-6.

Another set of examples of SVT variants includes SVT-Gauss-
Ge, SVT-Laplace-Ge, SVT-Mix1-Ge, and SVT-Mix2-Ge. These algo-
rithms are also distinguished by the distributions from which they
sample noise. SVT-Gauss-Ge samples both the threshold and the
queries from a Gaussian distribution. SVT-Laplace-Ge samples both
from a Laplace distribution. SVT-Mix1-Ge samples the threshold
from a Gaussian distribution and the queries from a Laplace distri-
bution, while SVT-Mix2-Ge does the opposite. These algorithms
output⊤when the noisy query result is greater than or equal to the
noisy threshold; otherwise, they output⊥. We also have non-private
versions of SVT-Gauss-Ge: SVT-Gauss-Ge-Leaky-1 and SVT-Gauss-
Ge-Leaky-2. SVT-Gauss-Ge-Leaky-1 compares noisy queries with
a non-noisy threshold, whereas SVT-Gauss-Ge-Leaky-2 compares
a noisy threshold with non-noisy queries.

Algorithm 6: SVT-Gauss

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← N (𝑇, 2∆
𝜖)

for 𝑖 ← 1 to 𝑁 do

r← N (𝑞[𝑖], 4∆
𝜖)

if r ≥ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
exit

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Algorithm 7: SVT-Laplace

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← Lap(𝑇, 2∆
𝜖)

for 𝑖 ← 1 to 𝑁 do

r← Lap(𝑞[𝑖], 4∆
𝜖)

if r ≥ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
exit

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Algorithm 8: SVT-Mix1

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← Lap(𝑇, 2∆
𝜖)

𝑐𝑜𝑢𝑛𝑡 ← 0
for 𝑖 ← 1 to 𝑁 do

r← N (𝑞[𝑖], 4∆
𝜖)

if r ≥ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑐 then

exit
end

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Algorithm 9: SVT-Mix2

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← N (𝑇, 2∆
𝜖)

𝑐𝑜𝑢𝑛𝑡 ← 0
for 𝑖 ← 1 to 𝑁 do

r← Lap(𝑞[𝑖], 4∆
𝜖)

if r ≥ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑐 then

exit
end

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Algorithm 10: SVT-Gauss-Leaky-1

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← 𝑇

for 𝑖 ← 1 to 𝑁 do

r← N (𝑞[𝑖], 2∆
𝜖)

if r ≥ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
exit

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Algorithm 11: SVT-Gauss-Leaky-2

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← N (𝑇, 2∆
𝜖)

for 𝑖 ← 1 to 𝑁 do

r← 𝑞[𝑖]
if r ≥ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
exit

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Algorithm 12: SVT-Laplace-Leaky-4
Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]
r𝑇 ← Lap(𝑇, 4∆

𝜖)
𝑐𝑜𝑢𝑛𝑡 ← 0
for 𝑖 ← 1 to 𝑁 do

r← Lap(𝑞[𝑖], 4∆
3𝜖)

b← r ≥ r𝑇
if 𝑏 then

𝑜𝑢𝑡[𝑖]← ⊤
𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑐 then

exit
end

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Algorithm 13: SVT-Laplace-Leaky-5
Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]
r𝑇 ← Lap(𝑇, 2∆

𝜖)
for 𝑖 ← 1 to 𝑁 do

r← 𝑞[𝑖]
b← r ≥ r𝑇
if 𝑏 then

𝑜𝑢𝑡[𝑖]← ⊤
else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Approximate Algorithms for Verifying Differential Privacy with Gaussian Distributions Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 14: SVT-Laplace-Leaky-6
Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]
r𝑇 ← Lap(𝑇, 2∆

𝜖)
for 𝑖 ← 1 to 𝑁 do

r← Lap(𝑞[𝑖], 2∆
𝜖)

b← r ≥ r𝑇
if 𝑏 then

𝑜𝑢𝑡[𝑖]← ⊤
else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Algorithm 15: SVT-Gauss-Ge

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← N (𝑇, 2∆
𝜖)

for 𝑖 ← 1 to 𝑁 do

r← N (𝑞[𝑖], 4∆
𝜖)

if r ≤ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
exit

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Algorithm 16: SVT-Laplace-Ge

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← Lap(𝑇, 2∆
𝜖)

for 𝑖 ← 1 to 𝑁 do

r← Lap(𝑞[𝑖], 4∆
𝜖)

if r ≤ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
exit

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

F.2 Noisy-Min and Noisy-Max
We have four variants of Noisy-Min and Noisy-Max: Noisy-Min-
Gauss, Noisy-Min-Laplace, Noisy-Max-Gauss, and Noisy-Max-
Laplace. Noisy-Min-Gauss and Noisy-Min-Laplace are similar algo-
rithms that differ only in the noise distribution: Noisy-Min-Gauss
uses Gaussian noise, whereas Noisy-Min-Laplace uses Laplace

Algorithm 17: SVT-Mix1-Ge

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← Lap(𝑇, 2∆
𝜖)

𝑐𝑜𝑢𝑛𝑡 ← 0
for 𝑖 ← 1 to 𝑁 do

r← N (𝑞[𝑖], 4∆
𝜖)

if r ≤ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑐 then

exit
end

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Algorithm 18: SVT-Mix2-Ge

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← N (𝑇, 2∆
𝜖)

𝑐𝑜𝑢𝑛𝑡 ← 0
for 𝑖 ← 1 to 𝑁 do

r← Lap(𝑞[𝑖], 4∆
𝜖)

if r ≤ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑐 then

exit
end

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Algorithm 19: SVT-Gauss-Ge-Leaky-1

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← 𝑇

for 𝑖 ← 1 to 𝑁 do

r← N (𝑞[𝑖], 2∆
𝜖)

if r ≤ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
exit

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Algorithm 20: SVT-Gauss-Ge-Leaky-2

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

r𝑇 ← N (𝑇, 2∆
𝜖)

for 𝑖 ← 1 to 𝑁 do

r← 𝑞[𝑖]
if r ≤ r𝑇 then

𝑜𝑢𝑡[𝑖]← ⊤
exit

else

𝑜𝑢𝑡[𝑖]← ⊥
end

end

noise. These algorithms add noise to each query and perform an
argmin operation, returning the index of the noisy minimum value.

Similarly, Noisy-Max-Gauss and Noisy-Max-Laplace are also
similar algorithms that differ only in the noise distribution: Noisy-
Max-Gauss uses Gaussian noise, whereas Noisy-Max-Laplace uses
Laplace noise. These algorithms add noise to each query and per-
form an argmax operation, returning the index of the noisy maxi-
mum value.

Algorithm 21: Noisy-Max-Gauss

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡

NoisyVector← []
for 𝑖 ← 1 to 𝑁 do

NoisyVector[i]←N (𝑞[𝑖], 4∆
𝜖)

end

out← argmax(NoisyVector)

Algorithm 22: Noisy-Min-Gauss

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡

NoisyVector← []
for 𝑖 ← 1 to 𝑁 do

NoisyVector[i]←N (𝑞[𝑖], 4∆
𝜖)

end

out← argmin(NoisyVector)

F.3 𝑘-Min-Max and𝑚-Range
The 𝑘-Min-Max algorithm (for 𝑘 ≥ 2) perturbs the first 𝑘 queries
with Laplace noise, computes the noisy maximum and minimum,
and then checks whether each subsequent noisy query falls within
this range; if not, the algorithm exits. The𝑚-Range algorithm per-
turbs 2𝑚 thresholds that define a rectangle of𝑚 dimensions and
checks whether noisy queries lie within these noisy limits.

Algorithm 23: Noisy-Max-Laplace

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡

NoisyVector← []
for 𝑖 ← 1 to 𝑁 do

NoisyVector[i]← Lap(𝑞[𝑖], 2
𝜖)

end

out← argmax(NoisyVector)

Algorithm 24: Noisy-Min-Laplace

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡

NoisyVector← []
for 𝑖 ← 1 to 𝑁 do

NoisyVector[i]← Lap(𝑞[𝑖], 2
𝜖)

end

out← argmin(NoisyVector)

Algorithm 25:𝑚-Range-Gauss
Input: 𝑞[1 : 𝑚]
Output: 𝑜𝑢𝑡[1 : 𝑁𝑚]

for 𝑗 ← 1 to𝑚 do

low[j]← Lap(𝑇1[𝑗], 4𝑚
𝜖)

high[j]← Lap(𝑇2[𝑗], 4𝑚
𝜖)

𝑜𝑢𝑡[𝑗]← cont
end

for 𝑖 ← 1 to 𝑁 do

for 𝑗 ← 1 to𝑚 do

r← Lap(𝑞[𝑚(𝑖 − 1) + 𝑗], 4
𝜖)

if (r ≥ low[j]) ∧ (r < high[j]) then
𝑜𝑢𝑡[𝑚(𝑖 − 1) + 𝑗]← cont

else if ((r ≥ low[j]) ∧ (r > high[j])) then
𝑜𝑢𝑡[𝑚(𝑖 − 1) + 𝑗]← ⊤
exit

end

else if ((r < low[j]) ∧ (r < high[j])) then
𝑜𝑢𝑡[𝑚(𝑖 − 1) + 𝑗]← ⊥
exit

end

end

end

G Full Experimental Results

Here, we present the complete experimental results. Table 7 shows
the performance results of our benchmark suite. Table ?? illustrates
the impact of optimization on SVT-Gauss, SVT-Laplace, SVT-Mix1,
and Noisy-Max-Gauss. Table 5 provides a comparison with the

Approximate Algorithms for Verifying Differential Privacy with Gaussian Distributions Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 26: 𝑘-Min-Max-Gauss

Input: 𝑞[1 : 𝑁]
Output: 𝑜𝑢𝑡[1 : 𝑁]

min,max← N (𝑞[1], 4𝑘
𝜖))

for 𝑖 ← 2 to 𝑘 do

r← N (𝑞[𝑖], 4𝑘
𝜖)

if (r > max) ∧ (r > min) then
max← r

else if (r < min) ∧ (r < max) then
min← r

end

𝑜𝑢𝑡[𝑖]← read
end

for 𝑖 ← 𝑘 + 1 to 𝑁 do

r← N (𝑞[𝑖], 4
𝜖)

if (r ≥ min) ∧ (r < max) then
𝑜𝑢𝑡[𝑖]← ⊥

else if (r ≥ min) ∧ (r ≥ max) then
𝑜𝑢𝑡[𝑖]← ⊤
exit

else if (r < min) ∧ (r < max) then
𝑜𝑢𝑡[𝑖]← ⊥
exit

end

end

DiPC tool. Table 4 demonstrates the effect of varying 𝜖 and 𝛿 . Sec-
tion G.1 discusses the comparison with CheckDP [53].

𝜖

𝛿
0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60

0.05 7.13 6.37 6.59 6.24 6.38 8.35 7.95 6.68

0.08 6.71 7.62 8.23 6.82 7.35 7.59 7.49 7.58

0.09 7.35 7.05 6.51 6.45 7.00 9.25 9.76 9.49

0.10 6.80 6.40 6.45 6.50 6.24 6.09 6.12 6.01

0.20 6.85 6.17 5.88 5.96 6.05 6.35 5.96 5.83

0.30 5.89 5.84 5.81 6.27 6.05 5.82 5.93 5.78

0.40 5.80 6.35 6.11 5.99 6.01 6.08 5.99 5.96

0.50 5.62 5.57 5.68 5.58 5.55 5.76 5.66 5.54

0.60 6.06 7.01 6.53 6.07 6.06 5.98 6.14 6.05

0.70 8.57 6.95 6.72 6.38 5.99 6.47 6.90 6.07

0.80 6.04 5.98 5.90 6.01 6.06 6.00 5.93 5.97

0.90 5.89 5.97 5.96 5.93 5.95 6.02 5.98 6.14

1.00 5.64 5.68 5.70 5.65 5.67 5.66 5.63 5.72

Table 4: Summary of the impact of varying 𝜖 and 𝛿 on the SVT-Gauss-Ge
example with an input size of 𝑁 = 5. In all cases, we used 𝜖prv = 𝜖 .

G.1 Comparison with CheckDP
We have compared our tool with CheckDP [53]. However, our
tool verifies privacy only for fixed values of 𝜖 , whereas CheckDP
verifies for all values of 𝜖 > 0. Additionally, our tool supports
checking of (𝜖, 𝛿)-differential privacy and can handle programs

Example 𝑁 𝜖
Time

Speedup DP?
DiPC [4] DiPApprox

SVT-Laplace

1 1 52 1 52.0 ✓

1 0.5 25 1 25.0 ✓

2 1 104 26 4.0 ✓

2 0.5 106 32 3.31 ✓

3 1 558 250 2.23 ✓

3 0.5 578 279 2.07 ✓

4 1 2814 1481 1.9 ✓

4 0.5 2850 1638 1.74 ✓

SVT-Laplace-Ge

1 1 29 1 29.0 ✓

1 0.5 23 1 23.0 ✓

2 1 145 25 5.8 ✓

2 0.5 163 22 7.41 ✓

3 1 906 227 3.99 ✓

3 0.5 1134 204 5.56 ✓

4 1 4317 1684 2.56 ✓

4 0.5 4887 1285 3.8 ✓

Noisy-Max-Laplace
3 1 278 166 1.67 ✓

3 0.5 311 152 2.05 ✓

Noisy-Min-Laplace
3 1 180 165 1.09 ✓

3 0.5 286 154 1.86 ✓

SVT-Laplace-Leaky-4 2 1 80 167 0.48 ×
SVT-Laplace-Leaky-5 2 0.5 7 1 7.0 ×
SVT-Laplace-Leaky-6 3 1 526 1075 0.49 ×

Table 5: Summary of comparison with DiPC. The table reports performance

for both tools. The columns are as follows: 𝑁 denotes the input size of the

program. Time indicates the average time (in seconds) to verify differential

privacy over three runs. DP? indicates whether the program is differentially

private. Speedup represents the ratio of the time taken by DiPC to that of

DiPApprox, indicating the relative performance gain. Differential privacy

checks were performed with 𝛿 = 0. For all examples in the table, 𝜖prv = 𝜖 .

with Gaussian distributions, whereas CheckDP only supports 𝜖-
differential privacy and programswith Laplace distributions. Table 8
presents the results of the comparison.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Example 𝑁
Final

|𝐺 |
Avg. Single Pair All Pairs

States Depth DP? Time DP? Time

SVT-Gauss

2 3 1.7 2.3 ✓ 1.6 ✓ 2.4

5 6 3.3 2.7 ✓ 7.9 ✓ 76.7

25 26 13.5 2.9 ✓ 441.3 − O.M

SVT-Gauss-Leaky-1
5 6 3.3 1.7 × 1.0 × 1.4

6 7 3.9 1.7 × 1.0 × 2.1

SVT-Gauss-Leaky-2
3 4 2.2 1.5 × 1.0 × 1.0

6 7 3.9 1.7 × 1.0 × 1.1

SVT-Gauss-Ge

2 3 1.7 2.3 ✓ 1.3 ✓ 1.5

5 6 3.3 2.7 ✓ 5.7 ✓ 72.3

25 26 13.5 2.9 ✓ 501.6 − O.M

SVT-Gauss-Ge-Leaky-1
5 6 3.3 1.7 × 1.0 × 1.2

6 7 3.9 1.7 × 1.0 × 1.7

SVT-Gauss-Ge-Leaky-2
3 4 2.2 1.5 × 1.0 × 0.9

6 7 3.9 1.7 × 1.0 × 1.0

SVT-Laplace

2 3 1.7 2.3 ✓ 5.1 ✓ 8.8

5 6 3.3 2.7 ✓ 47.6 − T.O

11 12 6.4 2.8 ✓ 500.2 − T.O

SVT-Laplace-Ge

2 3 1.7 2.3 ✓ 4.1 ✓ 8.8

5 6 3.3 2.7 ✓ 46.0 − T.O

11 12 6.4 2.8 ✓ 497.8 − T.O

SVT-Mix1

2 3 1.7 2.3 ✓ 2.4 ✓ 4.3

5 6 3.3 2.7 ✓ 19.5 ✓ 285.4

17 18 9.4 2.9 ✓ 365.7 − O.M

SVT-Mix1-Ge

2 3 1.7 2.3 ✓ 2.3 ✓ 4.1

5 6 3.3 2.7 ✓ 16.1 ✓ 261.0

17 18 9.4 2.9 ✓ 343.6 − O.M

SVT-Mix2

2 3 1.7 2.3 ✓ 7.2 ✓ 14.4

5 6 3.3 2.7 ✓ 72.2 − T.O

10 11 5.9 2.8 ✓ 524.6 − O.M

SVT-Mix2-Ge

2 3 1.7 2.3 ✓ 7.1 ✓ 13.4

5 6 3.3 2.7 ✓ 67.7 − T.O

10 11 5.9 2.8 ✓ 506.5 − O.M

Noisy-Max-Gauss

2 2 1.0 2.0 ✓ 1.0 ✓ 1.3

3 4 2.0 2.5 ✓ 1.6 ✓ 3.1

4 8 3.0 3.0 ✓ 37.8 ✓ 303.0

Noisy-Min-Gauss

2 2 1.0 2.0 ✓ 1.0 ✓ 1.3

3 4 2.0 2.5 ✓ 1.6 ✓ 3.1

4 8 3.0 3.0 ✓ 36.8 ✓ 303.6

Noisy-Max-Laplace
3 4 2.0 2.5 ✓ 13.1 ✓ 47.2

4 8 3.0 3.0 − T.O − T.O

Noisy-Min-Laplace
3 4 2.0 2.5 ✓ 9.8 ✓ 45.6

4 8 3.0 3.0 − T.O − T.O

𝑚-Range-Gauss
1 7 3.0 2.5 ✓ 1.5 ✓ 1.8

2 13 4.2 3.2 ✓ 171.2 ✓ 344.4

3 19 5.2 3.8 − T.O − T.O

𝑘-Min-Max-Gauss
3 16 4.0 3.0 ✓ 2.1 ✓ 5.7

4 28 5.1 3.4 ✓ 41.2 ✓ 335.7
Table 7: Summary of Experimental Results for DiPApprox. The columns in the

table are defined as follows: 𝑁 is the input size of the program. DP? indicates

whether the program is differentially private. Final States denotes the number

of final states. |𝐺 | and Avg. Depth, respectively, denote the average number of

conditions and the average nesting depth of integral expressions, per final state.

Time is the average time (in seconds) to verify differential privacy, measured

over three runs. T.O indicates a timeout (exceeding 10 minutes), and O.M
denotes a run out of memory. Differential privacy checks were performed

with 𝜖 = 0.5 and 𝛿 = 0.01, except for SVT-Gauss-Leaky-1, which uses 𝜖 = 8. We

used 𝜖prv = 0.5, except for SVT-Gauss, SVT-Gauss-Ge SVT-Mix1, SVT-Mix1-Ge,
SVT-Mix2 and SVT-Mix2-Ge, where 𝜖prv = 1.24.

Example 𝑁
Time

CheckDP DiPApprox

SVT-Gauss 1 29.9 1.3

𝑚-Range-Laplace 1 T.O 19.3

𝑘-Min-Max-Laplace 3 T.O 200.3
Table 8: Summary of comparison with CheckDP. The table reports performance

for both tools. The columns are as follows: 𝑁 denotes the input size of the

program. Time indicates the average time (in seconds) to verify differential

privacy over three runs. Differential privacy checks were performed with

𝜖prv = 𝜖 = 0.5 and 𝛿 = 0 for DiPApprox.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Motivating Example: Sparse Vector Technique with Gaussians (SVT-Gauss)
	4 Program syntax and semantics
	4.1 Syntax of DiPGauss Programs
	4.2 Semantics

	5 Checking differential privacy for DiPGauss programs
	5.1 VerifyDP algorithm
	5.2 On the soundness and completeness of VerifyDP

	6 Approximating Output Probabilities
	6.1 Computing probabilities via integral expressions
	6.2 Optimization of Integral Expressions

	7 Implementation and Evaluation
	7.1 Examples
	7.2 Experiments
	7.3 Comparison with DiPC
	7.4 Discussion

	8 Related Work
	9 Conclusions and Future Work
	References
	A Proof of Lemma 2
	B Proofs of Lemma 4 and Lemma 5
	C Proof of Lemma 6
	D Proof of Theorem 8
	E Correctness of Algorithm 5
	F Pseudocode of Examples
	F.1 SVT variants
	F.2 Noisy-Min and Noisy-Max
	F.3 k-Min-Max and m-Range

	G Full Experimental Results
	G.1 Comparison with CheckDP

